
1

CS 2710 1

Solving problems by searching

Chapter 3

CS 2710 - Blind Search 2

Outline

� Problem-solving agents

� Problem formulation

� Example problems

� Basic search algorithms

2

CS 2710 - Blind Search 3

Goal-based Agents

Agents that take actions in the pursuit of a
goal or goals.

CS 2710 - Blind Search 4

Goal-based Agents

� What should a goal-based agent do when
none of the actions it can currently perform
results in a goal state?

� Choose an action that at least leads to a
state that is closer to a goal than the current
one is.

3

CS 2710 - Blind Search 5

Goal-based Agents

Making that work can be tricky:

� What if one or more of the choices you make
turn out not to lead to a goal?

� What if you’re concerned with the best way
to achieve some goal?

� What if you’re under some kind of resource
constraint?

CS 2710 - Blind Search 6

Problem Solving as Search

One way to address these issues is to view
goal-attainment as problem solving, and
viewing that as a search through a state
space.

In chess, e.g., a state is a board configuration

4

CS 2710 - Blind Search 7

Problem-solving agents

CS 2710 - Blind Search 8

Problem Solving

A problem is characterized as:

� An initial state

� A set of actions

� A goal test

� A cost function

5

CS 2710 - Blind Search 9

Problem Solving

A problem is characterized as:

� An initial state

� A set of actions
� successors: state � set of states

� A goal test
� goalp: state � true or false

� A cost function
� edgecost: edge between states � cost

CS 2710 - Blind Search 10

Example Problems

� Toy problems (but sometimes useful)

� Illustrate or exercise various problem-solving methods

� Concise, exact description

� Can be used to compare performance

� Examples: 8-puzzle, 8-queens problem, Cryptarithmetic, Vacuum
world, Missionaries and cannibals, simple route finding

� Real-world problem

� More difficult

� No single, agreed-upon description

� Examples: Route finding, Touring and traveling salesperson
problems, VLSI layout, Robot navigation, Assembly sequencing

6

CS 2710 - Blind Search 11

Toy Problems: The vacuum world

• The vacuum world

– The world has only two

locations

– Each location may or may

not contain dirt

– The agent may be in one

location or the other

– 8 possible world states

– Three possible actions:

Left, Right, Suck

– Goal: clean up all the dirt

1 2

43

5 6

7 8

CS 2710 - Blind Search 12

Toy Problems:The vacuum world

� States: one of the 8 states given earlier

� Actions: move left, move right, suck

� Goal test: no dirt left in any square

� Path cost: each action costs one

S

R

L

S

SS

R

R

R

L

L

L

7

CS 2710 - Blind Search 13

Missionaries and cannibals

• Missionaries and cannibals
– Three missionaries and three

cannibals want to cross a river

– There is a boat that can hold two
people

– Cross the river, but make sure that
the missionaries are not
outnumbered by the cannibals on
either bank

• Needs a lot of abstraction
– Crocodiles in the river, the weather

and so on

– Only the endpoints of the crossing
are important

– Only two types of people

CS 2710 - Blind Search 14

Missionaries and cannibals

� Problem formulation

� States: ordered sequence of three numbers representing the
number of missionaries, cannibals and boats on the bank of the river
from which they started. The start state is (3, 3, 1)

� Actions: take two missionaries, two cannibals, or one of each across
in the boat

� Goal test: reached state (0, 0, 0)

� Path cost: number of crossings

8

CS 2710 - Blind Search 15

Real-world problems

� Route finding

� Specified locations and transition along links between them

� Applications: routing in computer networks, automated travel
advisory systems, airline travel planning systems

� Touring and traveling salesperson problems
� “Visit every city on the map at least once and end in Bucharest”

� Needs information about the visited cities

� Goal: Find the shortest tour that visits all cities

� NP-hard, but a lot of effort has been spent on improving the
capabilities of TSP algorithms

� Applications: planning movements of automatic circuit board drills

CS 2710 - Blind Search 16

What is a Solution?

� A sequence of actions that when performed
will transform the initial state into a goal
state (e.g., the sequence of actions that gets
the missionaries safely across the river)

� Or sometimes just the goal state (e.g., infer
molecular structure from mass
spectrographic data)

9

CS 2710 - Blind Search 17

Example: Romania

� On holiday in Romania; currently in Arad.

� Flight leaves tomorrow from Bucharest

� Formulate goal:
� be in Bucharest

� Formulate problem:
� states: various cities

� actions: drive between cities

� Find solution:
� sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest

CS 2710 - Blind Search 18

Example: Romania

10

CS 2710 - Blind Search 19

Selecting a state space

� Real world is absurdly complex
� state space must be abstracted for problem solving

� (Abstract) state = set of real states

� (Abstract) action = complex combination of real actions
� e.g., "Arad � Zerind" represents a complex set of possible routes,

detours, rest stops, etc.

� For guaranteed realizability, any real state "in Arad“ must
get to some real state "in Zerind"

� (Abstract) solution =
� set of real paths that are solutions in the real world

� Each abstract action should be "easier" than the original
problem

CS 2710 - Blind Search 20

Example: The 8-puzzle

� states?

� actions?

� goal test?

� path cost?

11

CS 2710 - Blind Search 21

Example: The 8-puzzle

� states? locations of tiles
� actions? move blank left, right, up, down
� goal test? = goal state (given)

� path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

CS 2710 - Blind Search 22

Initial Assumptions

� The agent knows its current state

� Only the actions of the agent will change the
world

� The effects of the agent’s actions are known
and deterministic

All of these are defeasible… likely to be wrong
in real settings.

12

CS 2710 - Blind Search 23

Another Assumption

� Searching/problem-solving and acting are
distinct activities

� First you search for a solution (in your head)
then you execute it

CS 2710 - Blind Search 24

Tree search algorithms

� Basic idea:
� offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

13

CS 2710 - Blind Search 25

Tree search example

CS 2710 - Blind Search 26

Tree search example

14

CS 2710 - Blind Search 27

Tree search example

CS 2710 - Blind Search 28

Implementation: general tree search

15

CS 2710 - Blind Search 29

Implementation: states vs. nodes

� A state is a (representation of) a physical configuration
� A node is a data structure constituting part of a search tree

includes state, parent node, action, path cost g(x), depth

� The Expand function creates new nodes, filling in the
various fields and using the SuccessorFn of the problem
to create the corresponding states.

CS 2710 - Blind Search 30

Search strategies

� A search strategy is defined by picking the order of node
expansion

� Strategies are evaluated along the following dimensions:
� completeness: does it always find a solution if one exists?

� time complexity: number of nodes generated

� space complexity: maximum number of nodes in memory

� optimality: does it always find a least-cost solution?

� Time and space complexity are measured in terms of
� b: maximum branching factor of the search tree

� d: depth of the least-cost solution

� m: maximum depth of the state space (may be ∞)

16

CS 2710 - Blind Search 31

Uninformed search strategies

� Uninformed search strategies use only the
information available in the problem
definition

� Breadth-first search

� Uniform-cost search

� Depth-first search

� Depth-limited search

� Iterative deepening search

CS 2710 - Blind Search 32

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

� fringe is a FIFO queue, i.e., new successors go
at end

17

CS 2710 - Blind Search 33

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

� fringe is a FIFO queue, i.e., new successors go
at end

CS 2710 - Blind Search 34

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

� fringe is a FIFO queue, i.e., new successors go
at end

18

CS 2710 - Blind Search 35

Breadth-first search

� Expand shallowest unexpanded node

� Implementation:

� fringe is a FIFO queue, i.e., new successors go
at end

CS 2710 - Blind Search 36

Properties of breadth-first search

� Complete? Yes (if b is finite)

� Time? 1+b+b2+b3+… +bd + b(bd-1) = O(bd+1)

� Space? O(bd+1) (keeps every node in memory)

� Optimal? Yes (if cost = 1 per step)

� Space is the bigger problem (more than time)

19

CS 2710 - Blind Search 37

Uniform-cost search

� Expand least-cost unexpanded node

� Implementation:
� fringe = queue ordered by path cost

� Equivalent to breadth-first if step costs all equal

� Complete? Yes, if step cost ≥ ε

� Time? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε)) where C* is the cost of the optimal solution

� Space? # of nodes with g ≤ cost of optimal solution,
O(bceiling(C*/ ε))

� Optimal? Yes – nodes expanded in increasing order of g(n)

CS 2710 - Blind Search 38

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

20

CS 2710 - Blind Search 39

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 40

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

21

CS 2710 - Blind Search 41

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 42

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

22

CS 2710 - Blind Search 43

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 44

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

23

CS 2710 - Blind Search 45

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 46

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

24

CS 2710 - Blind Search 47

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 48

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

25

CS 2710 - Blind Search 49

Depth-first search

� Expand deepest unexpanded node

� Implementation:

� fringe = LIFO queue, i.e., put successors at front

CS 2710 - Blind Search 50

Properties of depth-first search

� Complete? No: fails in infinite-depth spaces, spaces
with loops

� Modify to avoid repeated states along path

� complete in finite spaces

� Time? O(bm): terrible if m is much larger than d
� but if solutions are dense, may be much faster than
breadth-first

� Space? O(bm), i.e., linear space!

� Optimal? No

26

CS 2710 - Blind Search 51

Depth-limited search

= depth-first search with depth limit l,

i.e., nodes at depth l have no successors

� Recursive implementation:

CS 2710 - Blind Search 52

Iterative deepening search

27

CS 2710 - Blind Search 53

Iterative deepening search l =0

CS 2710 - Blind Search 54

Iterative deepening search l =1

28

CS 2710 - Blind Search 55

Iterative deepening search l =2

CS 2710 - Blind Search 56

Iterative deepening search l =3

29

CS 2710 - Blind Search 57

Iterative deepening search

� Number of nodes generated in a depth-limited search to
depth d with branching factor b:

NDLS = b
0 + b1 + b2 + … + bd-2 + bd-1 + bd

� Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

NIDS = (d+1)b
0 + d b^1 + (d-1)b^2 + … + 3bd-2 +2bd-1 + 1bd

� For b = 10, d = 5,
� NDLS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111

� NIDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

� Overhead = (123,456 - 111,111)/111,111 = 11%

CS 2710 - Blind Search 58

Properties of iterative deepening

search

� Complete? Yes

� Time? (d+1)b0 + d b1 + (d-1)b2 + … + bd =
O(bd)

� Space? O(bd)

� Optimal? Yes, if step cost = 1

30

CS 2710 - Blind Search 59

Summary of algorithms

CS 2710 - Blind Search 60

Summary

� Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

� Variety of uninformed search strategies

� Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

