
CS2710 Homework1: An Evaluation Framework

for Search Algorithms

October 6, 2009

Abstract

The Missionaries and Cannibals problem is formally formulated. Then,
an evaluation framework enabling evaluating different search algorithms
for different problems is presented. Under such framework, Iterative Deep-
ening Search (IDS) algorithm and A* Search algorithm are implemented,
in solving Missionaries and Cannibals problem. Both algorithms could
adopt Tree or Graph Search strategy. Furthermore, we show that both
algorithms function correctly and properly by comparing the output infor-
mation with the theoretical result. Finally, we evaluate the performance
of algorithms in terms of maximum size of fringe set, the number of nodes
expanded and generated. Graph Search and Tree Search strategies are
also compared.

1 Formulate Problem

1.1 Problem Formulation for Missionaries and Cannibals

The Missionaries and Cannibals problem (M&C) is formulated as following.
Assuming that there are m missionaries, c cannibals and the boat capacity is b.

• States: ordered sequence of three numbers representing the number of
missionaries, cannibals and boats on the bank of the river from which
they started.

• Initial state: (m, c, 1).

• Goal test: test whether the goal state (0, 0, 0) is reached.

• Successor function: take mb missionaries and cb cannibals across from
Side1 to Side2 by boat, (assuming that currently there are mside1 mis-
sionaries and cside1 cannibals on Side1, and mside2 missionaries and cside2

cannibals on Side2) if:

1

(3, 3, 1)

(2, 2, 0)

(3, 1, 0)

(3, 2, 0)

(3, 2, 1)

(3, 0, 0)

(3, 1, 1)

(1, 1, 0)

(0, 1, 0)

(0, 3, 1)

(0, 2, 0)

(2, 2, 1)

(0, 2, 1)

(1, 1, 1)

(0, 1, 1)

(0, 0, 0)

<0, 1>

<0, 2>

<1, 1>

<1, 0>

<0, 1> <0, 2>

<0, 1>

<2, 0>

<0, 2>

<0, 1>

<2, 0>

<1, 1>

<0, 1>

<1, 0>

<0, 2>

<1, 1>

<0, 1>

Figure 1: Complete state space for M&C where m = 3, c = 3 and b = 2

– The boat is on Side1, and at least 1, at most b people, including
both missionaries and cannibals, could be on the boat, which means:
mb + cb ≥ 1 and mb + cb ≤ b.

– There are at least mb missionaries and cb cannibals on Side1, which
means: mb ≤ mside1 and cb ≤ cside1.

– The missionaries on boat will not be overnumbered by cannibals,
which means: mb = 0 or mb ≥ cb.

– The remaining missionaries on Side1 will not be overnumbered by
cannibals, which means: mside1−mb = 0 or mside1−mb ≥ cside1−cb.

– The missionaries on Side2 will not be overnumbered by cannibals,
which means: mside2 + mb = 0 or mside2 + mb ≥ cside2 + cb.

• Cost function: number of crossings.

1.2 Complete State Space

Figure 1 shows the complete state space for M&C problem where m = 3, c = 3
and b = 2. Every vertex presents a possible state which presented in a form
as specified in section 1.1. And each edge specifies the necessary action to
transite from one state to another state, in a form of < mb, cb >, which means
mb missionaries and cb cannibals will get on the boat to cross the river. For
instance, there is a edge labeled with < 1, 1 > between two verticies (3, 3, 1) and
(2, 2, 0). We could interpret it as by taking 1 missionaries and 1 cannibals from
the start side to the other side, the state trasites from (3, 3, 1) to (2, 2, 0), and
by taking 1 missionaries and 1 cannibals from the other side to the start side,
the state trasites from (2, 2, 0) to (3, 3, 1).

2 Node Generation

In this section, we will examine the sequence and order of nodes visited by
Iterative Deepening Search (IDS) and A* algorithm. We assume that there are

2

3 missionaries and 3 cannibals, and the boat capacity is 2.

2.1 First 10 Nodes Visited by IDS

IDS could use Graph Search or Tree Search strategy, while Graph Search strat-
egy eliminating reprocessing of nodes that have already been visited. The se-
quence and order of nodes visited by IDS are different when using different
search strategy. We list the first 10 nodes (in order) visited by IDS for both
Graph Search and Tree Search strategies.

• Using Graph Search strategy:

(3, 3, 1), (3, 3, 1), (3, 2, 0), (3, 1, 0), (2, 2, 0), (3, 3, 1), (3, 2, 0), (3, 1,
0), (3, 2, 1), (2, 2, 0)

• Using Tree Search strategy:

(3, 3, 1), (3, 3, 1), (3, 2, 0), (3, 1, 0), (2, 2, 0), (3, 3, 1), (3, 2, 0), (3, 3,
1), (3, 1, 0), (3, 2, 1)

2.2 Two Heuristics

Assuming that there are mside1 missionaries, cside1 cannibals and bside1 boats
at the start bank, and the boat capacity is b. Note that bside1 could only be 0
or 1, since there is only one boat. The boat takes b people, but after each trip,
one people must go back (to operate the boat). This will give us the following
heuristic:

• Heuristic H1
In order to get the heuristic, we try to solve a relaxed problem, by not
taking into account the possibility of cannibals eating missionaires. The
corresponding heuristic is expressed as below.

H1() =

max(1, 1 + 2 ∗ dmside1+cside1−b

b−1 e), if mside1 + cside1 > 0 and bside1 = 1
max(2, 2 ∗ dmside1+cside1

b−1 e), if mside1 + cside1 > 0 and bside1 = 0
0 if mside1 + cside1 = 0

• Heuristic H2
We can further relax the problem, by assuming that the boat could go
back to the start bank both automatically and without any cost after
taking at most b people to the other bank. Such heuristic could be:

H2() = dmside1 + cside1

b
e

2.2.1 Admissability of Heuristics

• Heuristic (H1)
Heuristic H1 is admissible. If boat is at the start bank, one boat trip

3

(from start bank) would transfer b people to the other side at most. If
boat is at the other bank, two boat trips (to start bank, and then from
start bank) would transfer at most b− 1 people to the other bank.

• Heuristic (H2)
Heuristic H2 is also admissible, because one trip can take no more than b
people from the start bank to the other bank.

2.2.2 Dominace Relationship Among H1 and H2

Heuristic H1 dominates H2, because ∀ state n, H1(n) ≥ H2(n).

2.3 First 10 Nodes Visited by A* with Herustic H1

As we explained in section 2.1, choosing different search strategy, Graph Search
or Tree Search, would affect the sequence and order of nodes visited by search
algorithms. We show the first 10 nodes (in order) visited by A* (with heuristic
H1) for both Graph Search and Tree Search strategies.

• Using Graph Search strategy: (3, 3, 1), (3, 1, 0), (2, 2, 0), (3, 2, 1), (3, 0,
0), (3, 1, 1), (1, 1, 0), (3, 2, 0), (2, 2, 1), (0, 2, 0)

• Using Tree Search strategy: (3, 3, 1), (3, 1, 0), (2, 2, 0), (3, 2, 1), (3, 2,
1), (3, 0, 0), (3, 0, 0), (3, 1, 1), (3, 1, 1), (1, 1, 0)

3 Implementation

The program is implemented with Java programming language in Eclipse IDE.

3.1 Design

The whole project is organized to 5 packages.

• Package edu.pitt.cs.cs2710.Problem includes classes for defining prob-
lems which need to solve. This package currently have two classes, an ab-
stract class Problem and another class called MCProblem. The Problem
class defines the necessary interfaces (methods). The MCProblem class is
a subclass of the Problem class, which formulate the M&C problem by
defining behaviors for the corresponding interfaces (methods). We could
later add new classes to define new problems, such as the 8-Puzzle prob-
lem. The important interfaces of these classes are listed. For simplicity,
we do not repeatly explain the interfaces of a sub-class that inherit from
its parent class. (This rule also applies for other packages.)

– Interfaces of the Problem class

∗ abstract Node startNode();
It specifies the start node (initial state) of the problem.

4

∗ abstract boolean validate(Action action);
It checks whether an action is valid.

∗ abstract boolean validate(State state);
It checks whether a state is valid.

∗ abstract void print(int level);
It outputs the problem information.

∗ abstract List< Pair<Action, State> > successor(State
state);
This method realizes the successor function, by returning all
the possible successor states and the corresponding actions for a
given state.

∗ abstract boolean goalTest(Node node);
This method implements the goal test function.

– Interfaces of the MCProblem class

∗ Node startNode();

∗ boolean validate(Action action);

∗ boolean validate(State state);

∗ void print(int level);

∗ List< Pair<Action, State> > successor(State state);

∗ boolean goalTest(Node node);

∗ int boatCapacity();
Inquiry function for boat capacity.

• Package edu.pitt.cs.cs2710.Search includes classes for different search
algorithms. This package currently have three classes, an abstract class
Search and two sub-classes–AStarSearch and IterativeDeepeningSearch.
The Search class defines the necessary interfaces (methods). AStarSearch
and IterativeDeepeningSearch are two sub-classes of the Search class,
which implement the A* and IDS algorithm. We could later add new
classes to implement new search algorithms, such as the Depth-First and
Width-First search. Actually, implementing more search algorithms is
really simple, as will be explained later.

– Interfaces of the Search class

∗ abstract Node search();
It is the interface for launching search to solve problems.

∗ Node execute(int depthLimit);
This is a template method which implements one time (pass)

5

search for specified depth limit (set to infinite if there is no depth
limitation). Note that such method supports both Graph search
and Tree search strategies. The search() method usually uses
this method to implement the search algorithm. With the help
of this existing method, implementing a new search algorithm
would be very easy.

∗ void expand(Node node);
It expands a node according to the successor function of the
problem.

∗ abstract Node getFromFringe();
It gets a node from the fringe set and defines the order in which
the nodes in fringe set are processed and expanded. Different
search algorithms would have different behavior for such method.

∗ abstract void addToFringeAll(List<Node> expandedNodes);
It adds a set of nodes to the fringe set and defines how to and
in which order these nodes are added to the fringe set. Different
search algorithms would have different behavior for such method.

∗ void initializeStatistics();
Initialize all the statistics.

∗ Heuristic heuristic();
Inquiry function for heuristic.

∗ boolean isGraphSearch();
Inquiry function for search strategy–Graph or Tree search.

∗ abstract void print(int level);
It outputs the statistics information about the search algorithm.

– Interfaces of the AStarSearch and IterativeDeepeningSearch
classes

∗ Node search();

∗ Node getFromFringe();

∗ addToFringeAll(List<Node> expandedNodes);

• Package edu.pitt.cs.cs2710.Heuristic includes classes for defining heuris-
tics that are used by A* search algorithm. This package currently have
three classes, an abstract class Heuristic and two sub-classes–MCHeuristicOne
and MCHeuristicTwo. New heuristic rules could be incorporate into our
program by simply adding a corresponding sub-class of Heuristic.

– Interfaces of the Heuristic class

∗ abstract int h(State state, Problem problem);
It defines the heuristic function for the specific problem.

– Interfaces of the MCHeuristicOne and MCHeuristicTwo classes

6

∗ int h(State state, Problem problem);

• Package edu.pitt.cs.cs2710.Util includes several utility classes.

– The Node class specifies the node information of the search tree or
graph.

– The MCNode class is a sub-class of the Node class that specifies
the specialized node information for M&C problem.

– The State class specifies the state information of a node.

– The MCState class is a sub-class of the State class, and specifies
the specialized state information for M&C problem.

– The Action class specifies the action information.

– The MCAction class is a sub-class of the Action class that specifies
the specialized action information for M&C problem.

– The Print class provides specialized facilities to print out informa-
tion by setting up the importance level of each message to print.

– The Pair class enables using pairs.

• Package edu.pitt.cs.cs2710.Main includes only one class, Main, to
preprocessing the arguments, run the specific search algorithm on specific
problem and print out the results.

3.2 Implementing Different Search Algorithms Using Func-
tion execute()

We will show the simplicity of implementing different search algorithms by using
the execute() function, which is provided in the Search class of the edu.pitt.cs.cs2710.Search
package. Listing1 lists the suedo code for the execute() function. One important
parameter, depthLimit, specifies the depth limit of the one pass search.
Search algorithms could be implemented simply by launching the execute() func-
tion one time (for A*) or several times (for IDS). Listing2 and 3 show the
suedo-code for implementing A* and IDS by using the execute() function. Note
that, as specified in section 3.1, the search algorithm needs to define two other
functions, getFromFringe() and addToFringeAll(), to specify how the fringe set
should behave.

7

Listing 1: Seudo Code for execute() in class Search
Node execute(fringe , setAccessed , depthLimit){

cutoffOccured = false ;

fringe .add(InitialNode);
while (! fringe .isEmpty()) {

node = GetFromFringe() ;
i f (GoalTest(node)) return node;
i f (node.depth() == depthLimit) {

cutoffOccured = true ;
continue;

}
i f (UseGraphSearch()) {

i f (! setAccessed . contains(node)) {
setAccessed .add(node);
AddToFringe(fringe , node.expand()) ;

} else {
//replace the visited one by current node
//i f current node has a less path cost .
nodeVisited = setAccessed . find(node);
i f (nodeVisited .g() > node.g()) {

setAccessed .remove(nodeVisited);
setAccessed .add(node);
AddToFringe(fringe , node.expand()) ;

}
}

} else {
AddToFringe(fringe , node.expand()) ;

}
}

i f (cutoffOccured) return CUTOFF;
else return null ;

}

Listing 2: Seudo Code for search() for class AStarSearch
Node search(){

// initialize statistics
init ia l izeStatist ics () ;
// launching the search for once
return execute(fringe , setAccessed , MAXIMUMINT);

}

Listing 3: Seudo Code for search() for class IterativeDeepeningSearch
Node search(){

// initialize statistics
init ia l izeStatist ics () ;

// launching the search for several times with increasing depth limit
for(int depthLimit = 0; depthLimit <= MAXIMUMINT; ++depthLimit) {

Node resultDLS = execute(fringe , setAccessed , depthLimit) ;
i f (resultDLS != CUTOFF)

return resultDLS;
}

return null ;
}

3.3 Features

The important characteristics of the program are summariezed.

8

• Scalability: this program does not only implement IDS and A* search
algorithms to solve M&C problem, but also create a framework which
makes it very convenient and easy to add both new problems and new
search algorithms.

• Both Graph Search and Tree Search strategies are supported. We could
compare the effeciency difference between these two strategies.

• Comperhensive information are available for analysis. We could compare
the performance and effeciency based on the information provided. And
we could configure how much information to expose by setting up the
verbose level. Four types of information are available.

– Problem information: about the problem to solve.
– Solution information: including the depth and path (actions) of the

found solution.
– Statistics about the search algorithm: including maximum length of

fringe, # node generated, # node expanded, the average branching
factor and # processed node with repeated state (only for Graph
Search strategy).

– Information about the search process: in terms of the sequence and
order of nodes expanded. This information is only available in ver-
bose mode.

3.4 Execution and Parameters

A jar file is submitted with the source code for the project. We can execute the
program by launching the jar file using the following command.

java − jar Search.jar “<m c b>′′ algorithm heuristic useGraphSearch verboseLevel

The arguments are explained as follows.

• “<mcb>′′ describes the problem senario of M&C in terms of #missionaries,
#cannibals, boat capacity.

• algorithm specifies the search algorithm to use–ids or astar.

• heuristic specifies the heuristic for A* algorithm–none, h1 or h2.

• useGraphSearch is an optional argument which indicates whether to use
Graph Search or Tree Search strategy–0 stands for Tree Search strategy
and 1 stands for Graph Search strategy. The default argument is 1 (Graph
Search).

• verboseLevel is an optional argument which indicates the verbose level
of the output information–0, 1 or 2, where 0 stands for the succinct mode,
and 2 stands for the verbose mode. The default argument is 1 (median
mode).

9

4 Experiment Result and Evaluation

4.1 Sequence of Nodes Visited

In this section, we will check if the implemented search algorithms work correctly
by comparing the sequence and order of nodes visited (expanded) against the
theoretical results in section 2.1 and 2.3. The problem used in this section is
the same as the one used in section 2.1 and 2.3, that there are 3 missionaries
and 3 cannibals, and the boat capacity is 2.

4.1.1 IDS

• Using Graph Search strategy

Listing4 shows the output information for IDS algorithm with Graph
Search strategy. You can get such information by launch the program with
command: java − jar Search.jar “<3 3 2>′′ ids none 1 2. The se-
quence and order of first 10 visited nodes perfectely match the result in
section 2.1, and justisfy the correctness of the program.

• Using Tree Search strategy

Listing5 shows only part of the output information for IDS algorithm with
Tree Search strategy. Only the first 20 expanded nodes are listed, since
the whole visit sequence is so huge (consisting of 8485 nodes). You can
obtain the full output information by launch the program with command:
java − jar Search.jar “<3 3 2>′′ ids none 0 2. The sequence and
order of first 10 visited nodes perfectely match the result in section 2.1.

4.1.2 A* with Heuristic H1

• Using Graph Search strategy

Listing6 shows the output information for A* algorithm with Graph Search
strategy. You can get such information by launch the program with com-
mand: java − jar Search.jar “<3 3 2>′′ astar h1 1 2. The sequence
and order of first 10 visited nodes perfectely match the result in section 2.3.

• Using Tree Search strategy
Listing7 shows the output information for A* algorithm with Tree Search
strategy. You can get such information by launch the program with com-
mand: java − jar Search.jar “<3 3 2>′′ ids none 0 2. The sequence
and order of first 10 visited nodes perfectely match the result in section 2.1.

10

Listing 4: Program output for IDS algorithm with Graph Search strategy

===Problem Information===
<3, 3, 2>

===Verbose mode information (sequence of EXPANDED nodes)===
State: (3, 3, 1) State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0)
State: (2, 2, 0) State: (2, 2, 0) State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0)
State: (3, 2, 1) State: (3, 0, 0) State: (3, 1, 1) State: (2, 2, 0) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0)
State: (3, 1, 1) State: (1, 1, 0) State: (2, 2, 0) State: (2, 2, 0) State: (3, 3, 1)
State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0) State: (3, 1, 1)
State: (1, 1, 0) State: (2, 2, 1) State: (2, 2, 0) State: (2, 2, 0) State: (3, 3, 1)
State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0) State: (3, 1, 1)
State: (1, 1, 0) State: (2, 2, 1) State: (0, 2, 0) State: (2, 2, 0) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0)
State: (3, 1, 1) State: (1, 1, 0) State: (2, 2, 1) State: (0, 2, 0) State: (0, 3, 1)
State: (2, 2, 0) State: (2, 2, 0) State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0)
State: (3, 2, 1) State: (3, 0, 0) State: (3, 1, 1) State: (1, 1, 0) State: (2, 2, 1)
State: (0, 2, 0) State: (0, 3, 1) State: (0, 1, 0) State: (2, 2, 0) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (3, 2, 1) State: (3, 0, 0)
State: (3, 1, 1) State: (1, 1, 0) State: (2, 2, 1) State: (0, 2, 0) State: (0, 3, 1)
State: (0, 1, 0) State: (0, 2, 1)

===Information about the found solution [Depth: 11]===
0)Initial State State: (3, 3, 1)
1)Action: [0, 2, −−>] State: (3, 1, 0)
2)Action: [0, 1, <−−] State: (3, 2, 1)
3)Action: [0, 2, −−>] State: (3, 0, 0)
4)Action: [0, 1, <−−] State: (3, 1, 1)
5)Action: [2, 0, −−>] State: (1, 1, 0)
6)Action: [1, 1, <−−] State: (2, 2, 1)
7)Action: [2, 0, −−>] State: (0, 2, 0)
8)Action: [0, 1, <−−] State: (0, 3, 1)
9)Action: [0, 2, −−>] State: (0, 1, 0)

10)Action: [0, 1, <−−] State: (0, 2, 1)
11)Action: [0, 2, −−>] State: (0, 0, 0)

===Statistics for algorithm [IDS, h1, Graph Search]===
1) Maximum length of fringe: 10
2) # Node generated: 196
3) # Node expanded: 92
4) Average branching factor: 2.130434782608696
5) # Node with repeated state: 77

Listing 5: Partial program output for IDS algorithm with Tree Search strategy
===Problem Information===

<3, 3, 2>

===Verbose mode information (sequence of EXPANDED nodes)===
State: (3, 3, 1) State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (2, 2, 0)
State: (3, 3, 1) State: (3, 2, 0) State: (3, 3, 1) State: (3, 1, 0) State: (3, 2, 1)
State: (3, 3, 1) State: (2, 2, 0) State: (3, 2, 1) State: (3, 3, 1) State: (3, 3, 1)
State: (3, 2, 0) State: (3, 3, 1) State: (3, 2, 0) State: (3, 1, 0) State: (2, 2, 0)
.

===Information about the found solution [Depth: 11]===
0)Initial State State: (3, 3, 1)
1)Action: [0, 2, −−>] State: (3, 1, 0)
2)Action: [0, 1, <−−] State: (3, 2, 1)
3)Action: [0, 2, −−>] State: (3, 0, 0)
4)Action: [0, 1, <−−] State: (3, 1, 1)
5)Action: [2, 0, −−>] State: (1, 1, 0)
6)Action: [1, 1, <−−] State: (2, 2, 1)
7)Action: [2, 0, −−>] State: (0, 2, 0)
8)Action: [0, 1, <−−] State: (0, 3, 1)
9)Action: [0, 2, −−>] State: (0, 1, 0)

10)Action: [0, 1, <−−] State: (0, 2, 1)
11)Action: [0, 2, −−>] State: (0, 0, 0)

===Statistics for algorithm [IDS, h1, Tree Search]===
1) Maximum length of fringe: 17
2) # Node generated: 19445
3) # Node expanded: 8485
4) Average branching factor: 2.2916912197996466

11

Listing 6: Program output for A* algorithm with Graph Search strategy
===Problem Information===

<3, 3, 2>

===Verbose mode information (sequence of EXPANDED nodes)===
State: (3, 3, 1) State: (3, 1, 0) State: (2, 2, 0) State: (3, 2, 1) State: (3, 0, 0)
State: (3, 1, 1) State: (1, 1, 0) State: (3, 2, 0) State: (2, 2, 1) State: (0, 2, 0)
State: (0, 3, 1) State: (0, 1, 0) State: (1, 1, 1) State: (0, 2, 1)

===Information about the found solution [Depth: 11]===
0)Initial State State: (3, 3, 1)
1)Action: [0, 2, −−>] State: (3, 1, 0)
2)Action: [0, 1, <−−] State: (3, 2, 1)
3)Action: [0, 2, −−>] State: (3, 0, 0)
4)Action: [0, 1, <−−] State: (3, 1, 1)
5)Action: [2, 0, −−>] State: (1, 1, 0)
6)Action: [1, 1, <−−] State: (2, 2, 1)
7)Action: [2, 0, −−>] State: (0, 2, 0)
8)Action: [0, 1, <−−] State: (0, 3, 1)
9)Action: [0, 2, −−>] State: (0, 1, 0)

10)Action: [1, 0, <−−] State: (1, 1, 1)
11)Action: [1, 1, −−>] State: (0, 0, 0)

===Statistics for algorithm [A∗, h1, Graph Search]===
1) Maximum length of fringe: 9
2) # Node generated: 30
3) # Node expanded: 14
4) Average branching factor: 2.142857142857143
5) # Node with repeated state: 9

Listing 7: Program output for A* algorithm with Tree Search strategy
===Problem Information===

<3, 3, 2>

===Verbose mode information (sequence of EXPANDED nodes)===
State: (3, 3, 1) State: (3, 1, 0) State: (2, 2, 0) State: (3, 2, 1) State: (3, 2, 1)
State: (3, 0, 0) State: (3, 0, 0) State: (3, 1, 1) State: (3, 1, 1) State: (1, 1, 0)
State: (1, 1, 0) State: (3, 1, 1) State: (3, 1, 1) State: (1, 1, 0) State: (1, 1, 0)
State: (3, 2, 1) State: (2, 2, 0) State: (3, 2, 0) State: (3, 3, 1) State: (3, 3, 1)
State: (2, 2, 0) State: (2, 2, 0) State: (3, 2, 1) State: (3, 1, 0) State: (3, 0, 0)
State: (3, 2, 1) State: (3, 0, 0) State: (3, 1, 0) State: (3, 0, 0) State: (3, 1, 1)
State: (3, 2, 1) State: (3, 1, 1) State: (1, 1, 0) State: (3, 0, 0) State: (1, 1, 0)
State: (3, 1, 1) State: (2, 2, 0) State: (1, 1, 0) State: (3, 2, 1) State: (3, 3, 1)
State: (3, 0, 0) State: (3, 1, 0) State: (3, 0, 0) State: (3, 1, 0) State: (2, 2, 0)
State: (3, 1, 1) State: (2, 2, 1) State: (3, 2, 1) State: (0, 2, 0) State: (3, 2, 1)
State: (3, 1, 1) State: (3, 2, 1) State: (1, 1, 0) State: (3, 0, 0) State: (3, 2, 1)
State: (3, 1, 1) State: (3, 0, 0) State: (1, 1, 0) State: (3, 1, 1) State: (3, 2, 1)
State: (1, 1, 0) State: (3, 0, 0) State: (3, 1, 0) State: (3, 1, 1) State: (3, 2, 1)
State: (1, 1, 0) State: (3, 0, 0) State: (2, 2, 1) State: (3, 1, 1) State: (1, 1, 0)
State: (0, 2, 0) State: (1, 1, 0) State: (0, 3, 1) State: (1, 1, 0) State: (0, 1, 0)
State: (1, 1, 0) State: (0, 2, 1) State: (1, 1, 1)

===Information about the found solution [Depth: 11]===
0)Initial State State: (3, 3, 1)
1)Action: [1, 1, −−>] State: (2, 2, 0)
2)Action: [1, 0, <−−] State: (3, 2, 1)
3)Action: [0, 2, −−>] State: (3, 0, 0)
4)Action: [0, 1, <−−] State: (3, 1, 1)
5)Action: [2, 0, −−>] State: (1, 1, 0)
6)Action: [1, 1, <−−] State: (2, 2, 1)
7)Action: [2, 0, −−>] State: (0, 2, 0)
8)Action: [0, 1, <−−] State: (0, 3, 1)
9)Action: [0, 2, −−>] State: (0, 1, 0)

10)Action: [0, 1, <−−] State: (0, 2, 1)
11)Action: [0, 2, −−>] State: (0, 0, 0)

===Statistics for algorithm [A∗, h1, Tree Search]===
1) Maximum length of fringe: 96
2) # Node generated: 173
3) # Node expanded: 78
4) Average branching factor: 2.217948717948718

4.2 Evaluation of Algorithms, Strategies and Heuristics

4.2.1 Results

Table1 gives the maximum fringe size and the length of the found solution for
different algorithms / strategies / heuristics. Note that a result labeled with -

12

Problem
Maximum fringe length Length of found solution

Tree search strategy Graph search strategy Tree search strategy Graph search strategy
IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none)

<3 3 2> 17 96 3168 17694 10 9 5 5 11 11 11 11 11 11 11 11
<4 4 2> - - - - 7 11 6 5 - - - - * * * *
<4 4 3> 23 208 2299 32234 15 22 16 12 9 9 9 9 9 9 9 9
<6 5 2> - 94 - - 19 41 14 14 - 19 - - 19 19 19 19
<6 6 4> 31 568 8781 412578 26 42 27 25 9 9 9 9 9 9 9 9
<7 7 4> 38 996 105753 - 31 44 33 30 11 11 11 - 11 11 11 11

Table 1: The maximum length of fringe and the length of the found solution for
different search algorithms / strategies / heuristics

Problem
node expanded # node generated

Tree search strategy Graph search strategy Tree search strategy Graph search strategy
IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none) IDS A*(H1) A*(H2) A*(none)

<3 3 2> 8485 78 2566 15096 92 14 14 14 19445 173 5733 32789 196 30 30 30
<4 4 2> - - - - 59 11 11 11 - - - - 125 22 22 22
<4 4 3> 8164 106 1255 14191 124 15 19 20 24971 313 3553 46424 335 44 53 55
<6 5 2> - 68 - - 430 31 34 34 - 161 - - 1009 75 79 79
<6 6 4> 51620 198 3566 114865 216 21 27 32 205772 765 12346 527442 758 77 99 111
<7 7 4> 939856 352 39450 - 363 29 36 38 3791002 1347 145202 - 1257 104 126 131

Table 2: The # node expanded and # node generated for different search
algorithms / strategies / heuristics

means the specific algorithm could not finish the search process, may be due to
out of memory problem (inefficiency). As you may know, the problem <4 4 2>
does not have any solution. The result labeled with * means the algorithm
detects that there is no solution.
Table2 gives the # node expanded and # node generated for different algo-
rithms / strategies / heuristics.

The maximum fringe length could reflect the memory usage, and the # node
expanded and generated could serve as indicators for the performance. We
analyze the result as below.

4.2.2 IDS vs A*

• A* consumes much more memory than IDS, suggested by the maximum
fringe length which implies the number of nodes need to keep in the mem-
ory for later expansion. A* algorithm with no heuristic, A*(none), is
equivalent to Breadth First Search (BFS), and has the worst memory
efficiency.

• A* is faster than IDS, implied by the # node expanded and generated.
The performance difference between them is huge when the Tree Search
strategy is applied.

4.2.3 Graph Search vs Tree Search

Graph Search strategy is much more effective and efficient (for both performance
and memory) than Tree Search strategy.

• Graph Search strategy could effectively detect the situtation of no solution

13

exists, while the Tree Search strategy cannot find that because it will
process repeated states and never stop.

• Graph Search strategy is much more efficient in terms of performance and
memory usage than the Tree Search strategy. And Tree Search strategy
sometimes cannot find the solution due to the performance and memory
usage inefficiency.

4.2.4 H1 vs H2 vs none

• The goodness of heuristic impacts the performance and memory usage
of the A* algorithm. When Graph Search strategy is applied, the per-
formance and memory usage differences between different heuristics are
insignificant, because there are very limited different states. Using Tree
Search strategy, however, coule make the differences enormous. For in-
stance, using Tree Search strategy, for problem <7 7 4>, A*(H1) is more
than 100x memory efficient and almost 115x peroformance effective than
A*(H2).

• H1 dominates H2, and therefore gets better performance and memory
usage.

• Both H1 and H2 are admissible, and could always find an optimal solution.

• A*(none) is equivalent to DFS. Its memory usage scales exponentially with
the problem size for the Tree Search strategy.

5 Conclusion

A scalable evaluation framework for search algorithms is implemented. The
IDS and A* search algorithm, with Graph Search and Tree Search strategies,
are implemented to solve the M&C problem under such framework. In addition,
two heuristics for A* search algorithm are proposed.

We proved that the program works correctly by providing the output infor-
mation and comparing it against the theoretical result in terms of the sequence
and order of first 10 nodes visited.

Finally, we evaluate IDS and A* search algorithms with different search
strategies and heuristics. We find that A* search can get better performance
but worse memory usage, comparing to IDS. In addition, Graph Search strat-
egy could make the search algorithm faster and less memory hungry. We also
identifies that a good heuristic could make the A* search much more effecient.
In our program, A* algorithm with Graph Search strategy and heuristic H1 is
the best choice.

14

	Formulate Problem
	Problem Formulation for Missionaries and Cannibals
	Complete State Space

	Node Generation
	First 10 Nodes Visited by IDS
	Two Heuristics
	Admissability of Heuristics
	Dominace Relationship Among H1 and H2

	First 10 Nodes Visited by A* with Herustic H1

	Implementation
	Design
	Implementing Different Search Algorithms Using Function execute()
	Features
	Execution and Parameters

	Experiment Result and Evaluation
	Sequence of Nodes Visited
	IDS
	A* with Heuristic H1

	Evaluation of Algorithms, Strategies and Heuristics
	Results
	IDS vs A*
	Graph Search vs Tree Search
	H1 vs H2 vs none

	Conclusion

