
Planning as Search-based Problem Solving?Imagine a supermarket shopping scenario using search-based problem solving:� Goal: buy milk and bananas� Operator: buy <obj>� Heuristic function: does <obj> = milk or bananas?

The operator would be instantiated with all possible objects that can bebought! Then the heuristic function would evaluate each instantation. Thisis essentially a guessing game!

Least CommitmentOr...suppose you haven't decided where to go shopping.� Goal: buy milk and bananas� Operators: go to<store>, buy <obj, store>� You can get milk at the convenience store, at the dairy, or at thesupermarket.� You can only get bananas at the supermarket.

If you decide where to buy milk �rst (say, at the convenience store), then youwill either: (a) have to backtrack, or (b) have to go to more than one store!Planners have to be exible (add actions or instantiate variables in anyorder) and usually follow the principle of least commitment.

Planning vs. Search-based Problem SolvingProblem solving: actions generate successor states.Planning: actions are represented as preconditions and e�ects.

Problem solving: state representations are complete.Planning: complete state descriptions would be enormous.

Problem solving: goal test and heuristic function used to evaluate states.Planning: goals are usually represented as a conjunct of state variables.

Problem solving: incrementally generates solution as a sequence of actions.Planning: can add actions to any part of the plan at any time.

The STRIPS LanguageSTRIPS (Stanford Research Institute Problem Solver) was a pioneeringplanning program developed in 1970. The STRIPS \language" is still widelyused today to represent states and operators.States and Goals: Conjunctions of function-free literals.Operators:action description: name for action; command to environment.precondtions: conjunction of atoms that must be true before theoperator can be applied.e�ects: add list and delete list

STRIPS OperatorsOperator 1: MOVE BLOCK TO BLOCKpreconds: block(x) ^ block(y) ^ block(z) ^ on(x; y) ^ clear(x) ^ clear(z)e�ects: Add: on(x,z), clear(y)Delete: on(x,y), clear(z)Operator 2: MOVE BLOCK TO TABLEpreconds: block(x) ^ block(y) ^ on(x; y) ^ clear(x)e�ects: Add: on(x,Table), clear(y)Delete: on(x,y)Operator 3: MOVE BLOCK FROM TABLEpreconds: block(x) ^ block(y) ^ on(x; Table) ^ clear(x) ^ clear(z)e�ects: Add: on(x,z)Delete: on(x,Table), clear(z)

Plan by Searching for a Satisfactory Sequence ofOperatorsSituation Space Planner Searches through space of possible situations;much like search-based problem solving.Progression Planner Forward search from the initial situation to the goalsituation.Usually doesn't work well; branching factor too high yieldsexponential growth of tree.Regression Planner Backward search from the goal situation to the initialsituation.Works better because goal state typically has only a fewconjuncts so only a few operators apply. But complicatedbecause the conjunction of goals needs to be satis�ed.

Planning Example
A

A

D

B

C

D

B C

Initial situation Goal situation

Initial Situation:on(A,C), on(C,Table), on(D,B), on(B,Table), clear(A), clear(D)Goal Situation:on(A,B), on(B,C)

Searching Plan Space

Alternative is to search through the space of plans rather than the space ofsituations.Start with simple, incomplete partial plan; expand until complete.

Operators: add a step, impose an ordering on existing steps, instantiate apreviously unbound variable.

Solution: �nal plan.

Plan RepresentationMost planners use the principle of least commitment.

Partial order planner: represents plans in which some steps are orderedand other steps are unordered.

Total order planner: simple list of steps.

A totally ordered plan that is derived from a plan P by adding orderingconstraints is called a linearization of P .

StartStartStart

Total Order Plans: Partial Order Plan:

Start

Left

Sock

Left

Shoe

Sock

Right

Shoe

Right

Finish

Start

Finish

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Start

Left

Sock

Shoe

Right

Finish

Right

Sock

Left

Shoe

Finish

Sock
Left

Right

Sock

Shoe
Left

Right

Shoe

Shoe

Right

Finish

Sock

Right

Left

Sock

Left

Shoe

Finish

Sock
Right

Shoe
Left

Left

Sock

Right

Shoe

LeftSockOn RightSockOn

LeftShoeOn, RightShoeOn

Start

Sock
Right

Shoe
Right

Sock
Left

Shoe
Left

Finish

Components of a Plan1. A set of plan steps. Each step is one of the operators for the problem.2. A set of step ordering constraints, Si � Sj .3. A set of variable binding constraints, v = x where v is a variable and xis a constant or another variable.4. A set of causal links, Si c! Sj (Si achieves precondition c for Sj .)

What is a solution?You might expect that only fully instantiated, totally ordered plans would beconsidered solutions. But this is not a good idea for several reasons:� It makes more sense to have a planner return a partial order plan thanto arbitrarily choose one linearization of it.� Sometimes actions can be performed in parallel, so it is best to generatesolutions that allow for actions to happen in parallel.� A plan may be integrated with another plan later. Keeping the planexible can help with plan integration.

We consider a plan to be a solution if it is complete and consistent.A complete plan is one in which every precondition is achieved by anotherstep. A precondition is achieved if it is an e�ect of a step and no otherstep can cancel it out. Formally:Si achieves precondition c of Sj if(1) Si � Sj and c � EFFECTS(Si), and(2) there is no step Sk such that (:c) � EFFECTS(Sk) whereSi � Sk � Sj in some linearization of the plan.A consistent plan is a plan with no contradictions in the ordering orbinding of constraints.A contradiction occurs when Si � Sj and Sj � Si or if v = Aand v = B for di�erent constants A and B.Under this de�nition, the partial plan for putting on socks is a solution!

Partial-Order Regression Planner ExampleSuppose you want a plan to buy milk, bananas, and a drill.The initial plan might be:
Finish

Start

Have(Drill) Have(Milk) Have(Banana) At(Home)

At(Home) Sells(SM,Banana) Sells(SM,Milk) Sells(HWS,Drill)

OperatorsOperator:ACTION = Go(there)PRECONDITIONS = At(here)EFFECTS = At(there) ^ : At(here)Operator:ACTION = Buy(obj)PRECONDITIONS = At(store) ^ Sells(store,obj)EFFECT = have(obj)

To keep the search focused, the planner only considers adding steps thatachieve a precondition that has not yet been achieved.

At(s), Sells(s,Drill) At(s), Sells(s,Milk) At(s), Sells(s,Bananas)

Finish

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

At(HWS), Sells(HWS,Drill) At(SM), Sells(SM,Milk) At(SM), Sells(SM,Bananas)

Finish

Start

Buy(Drill) Buy(Milk) Buy(Bananas)

Have(Drill), Have(Milk), Have(Bananas), At(Home)

The plan is extended by choosing Go actions to achieve the At preconditions.

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)

At(x)At(x)

At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Note that the Go actions have unachieved preconditions that interact!

Look what happens if the planner tries to achieve the preconditions of Gowith the At(home) condition in the initial state!
At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

At(Home) At(Home)

A planner can notice dead ends� This partial plan is a dead end because one step clobbers a protectedcondition for another step.� The planner must pay attention to the clausal links which are protected.The planner must ensure that threats (steps which can clobber protectedpreconditions) are order to come before or after the protected link.� Threats can be added by adding ordering constraints to put the threatbefore the protected link (demotion) or after the protected link(promotion).

The Sussman AnomalyFocusing on one conjunct at a time can make clobbering unavoidable.

C
B
A

A
C

B

© 1998 Morgan Kaufman Publishers

cL

cL

cLc cc

(a) (b) (c)

S 2

S 3

S 2

S 3

S 2

S 3

S1S11S

Ordering constraints aren't always enough...� Unfortunately, there is no way to reorder the Go threat because anyorder will delete the At(home) condition of the other step.� When a planner can't resolve a threat, it has no choice but to backtrack.� Suppose we trying adding a causal link from Go(HWS) to Go(SM). NowGo(SM) threatens the At(HWS) precondition of Buy(drill).� We can resolve this threat by ordering Go(SM) to come after Buy(drill).

At(SM), Sells(SM,Bananas)At(SM), Sells(SM,Milk)At(HWS), Sells(HWS,Drill)

Have(Drill) , Have(Milk) , Have(Bananas) , At(Home)

At(Home) At(HWS)

At(SM)

Finish

Go(HWS)

Buy(Drill) Buy(Milk) Buy(Bananas)

Go(SM)

Start

Go(Home)

At(SM)

At(Home)

At(HWS)

Have(Milk) At(Home) Have(Ban.) Have(Drill)

Buy(Drill)

Buy(Milk) Buy(Ban.)

Go(Home)

Go(HWS)

Go(SM)

Finish

Start

At(HWS) Sells(HWS,Drill)

At(SM) Sells(SM,Milk) At(SM) Sells(SM,Ban.)

function POP(initial, goal, operators) returns plan

plan MAKE-MINIMAL -PLAN(initial, goal)
loop do

if SOLUTION?(plan) then return plan
Sneed , c SELECT-SUBGOAL(plan)
CHOOSE-OPERATOR(plan, operators,Sneed,c)
RESOLVE-THREATS(plan)

end

function SELECT-SUBGOAL(plan) returns Sneed , c

pick a plan stepSneed from STEPS(plan)
with a preconditionc that has not been achieved

return Sneed , c

procedure CHOOSE-OPERATOR(plan, operators, Sneed, c)

choose a stepSadd from operators or STEPS(plan) that hasc as an effect
if there is no such stepthen fail
add the causal linkSadd

c�! Sneed to LINKS(plan)
add the ordering constraintSadd � Sneed to ORDERINGS(plan)
if Sadd is a newly added step fromoperators then

addSadd to STEPS(plan)
addStart � Sadd � Finish to ORDERINGS(plan)

procedure RESOLVE-THREATS(plan)

for each Sthreat that threatens a linkSi
c�! Sj in LINKS(plan) do

choose either
Promotion: Add Sthreat � Si to ORDERINGS(plan)
Demotion: Add Sj � Sthreat to ORDERINGS(plan)

if not CONSISTENT(plan) then fail
end

Possible ThreatsVariables can be left unbound in plans. If an operator produces an e�ect thatcould cause a threat if the variable takes a certain binding, then it is apossible threat.There are three general apporaches to dealing with possible threats:1. Resolve now by forcing a variable binding. The commitment may causetrouble later though.2. Resolve now with an inequality constraint (x 6= home). Lesscommitment, but more complicated for uni�cation algorithms.3. Ignore possible threats and only deal with them when they becomeknown threats. For example, if x = home is added then resolve thethreat. Low commitment, but can't say for sure that the plan is asolution.

Practical Applications for Planners

Job shop scheduling: assembling, manufacturing

Space missions: orchestrating observational equipment to maximize dataacquisition while minimizing time and energy consumption.

Construction: Building facilities, airplanes, spacecraft, etc.

Event scheduling: Scheduling meetings, classes, and other events.

Limitations of the STRIPS languageHierarchical planning: Generating complex plans often requires abstractplanning over increasingly detailed search spaces.Complex state conditions: STRIPS variables have limited in theircomplexity. For example, there is no quanti�cation and no conditionalstatements.Representing time: The STRIPS framework assumes that everythinghappens instantly. There is no way to represent duration, deadlines,time windows, etc.Resource limitations: In the real world, resources are limited. You needto represent the fact that the number of available workers, equipment,money, etc. is constrained.

