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Graphplan

José Luis Ambite*

[* based in part on slides by Jim Blythe and Dan Weld]
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Basic idea

Construct a graph that encodes 
constraints on possible plans
Use this “planning graph” to constrain 
search for a valid plan:

If valid plan exists, it’s a subgraph of the 
planning graph

Planning graph can be built for each 
problem in polynomial time
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Problem handled by GraphPlan*

Pure STRIPS operators: 
conjunctive preconditions 
no negated preconditions
no conditional effects
no universal effects

Finds “shortest parallel plan”
Sound, complete and will terminate with 
failure if there is no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97], 
later extended to handle all these restrictions [Koehler et al 97]
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Planning graph

Directed, leveled graph
2 types of nodes:

Proposition: P
Action: A

3 types of edges (between levels)
Precondition: P -> A
Add: A -> P
Delete: A -> P

Proposition and action levels alternate
Action level includes actions whose preconditions 
are satisfied in previous level plus no-op actions 
(to solve frame problem).
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Rocket domain
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Planning graph

…
…

…
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Constructing the planning graph

Level P1: all literals from the initial state
Add an action in level Ai if all its 
preconditions are present in level Pi

Add a precondition in level Pi if it is the 
effect of some action in level Ai-1
(including no-ops)
Maintain a set of exclusion relations to 
eliminate incompatible propositions and 
actions (thus reducing the graph size)

P1 A1 P2 A2 … Pn-1 An-1 Pn
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Mutual Exclusion relations

Two actions (or literals) are mutually 
exclusive (mutex) at some stage if no 
valid plan could contain both.
Two actions are mutex if:

Interference: one clobbers others’ effect or 
precondition
Competing needs: mutex preconditions

Two propositions are mutex if:
All ways of achieving them are mutex
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Mutual Exclusion relations

Inconsistent
Effects

Inconsistent
Support

Competing
Needs

Interference
(prec-effect)
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Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage))
Actions:

Cook   :precondition (cleanHands)
:effect   (dinner)

Wrap   :precondition (quiet)
:effect   (present)

Carry   :precondition
:effect (and (not (garbage)) (not (cleanHands))

Dolly   :precondition
:effect (and (not (garbage)) (not (quiet)))
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Dinner Date example
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Dinner Date example
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Observation 1

Propositions monotonically increase
(always carried forward by no-ops)
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Observation 2

Actions monotonically increase
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Observation 3

Proposition mutex relationships monotonically decrease
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Observation 4

Action mutex relationships monotonically decrease
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Observation 5

Planning Graph ‘levels off’. 
After some time k all levels are identical
Because it’s a finite space, the set of 
literals never decreases and mutexes
don’t reappear.
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Valid plan

A valid plan is a planning graph where:
Actions at the same level don’t interfere 
Each action’s preconditions are made true 
by the plan
Goals are satisfied
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GraphPlan algorithm

Grow the planning graph (PG) until all 
goals are reachable and not mutex. (If PG 
levels off first, fail)
Search the PG for a valid plan
If non found, add a level to the PG and 
try again
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Searching for a solution plan

Backward chain on the planning graph
Achieve goals level by level
At level k, pick a subset of non-mutex actions 
to achieve current goals. Their preconditions 
become the goals for k-1 level.
Build goal subset by picking each goal and 
choosing an action to add. Use one already 
selected if possible. Do forward checking on 
remaining goals (backtrack if can’t pick non-
mutex action)
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Plan Graph Search

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set
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Termination for unsolvable problems

Graphplan records (memoizes) sets of 
unsolvable goals:

U(i,t) = unsolvable goals at level i after stage t.

More efficient: early backtracking
Also provides necessary and sufficient 
conditions for termination:

Assume plan graph levels off at level n, stage t > n
If U(n, t-1) = U(n, t) then we know we’re in a loop 
and can terminate safely.
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Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage))
Actions:

Cook   :precondition (cleanHands)
:effect   (dinner)

Wrap   :precondition (quiet)
:effect   (present)

Carry   :precondition
:effect (and (not (garbage)) (not (cleanHands))

Dolly   :precondition
:effect (and (not (garbage)) (not (quiet)))
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Dinner Date example



25

Dinner Date example
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Dinner Date example
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Planning Graph Example
Rocket problem
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Plan Graph creation is Polynomial

Theorem 1:
The size of the t-level PG and the time to create 
it are polynomial in

t = number of levels
n = number of objects
m = number of operators
p = propositions in the initial state

Max nodes proposition level: O(p+mlnk)
Max nodes action level: O(mnk)
k = largest number of action parameters, constant!
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In-place plan graph expansion
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Props & actions:   start level → start time
Mutex relations:    end level → end time
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Perverting Graphplan

ADL
Gazen & Knoblock
Koehler
Anderson, Smith & Weld
Boutilier

Uncertainty Rao
Graphplan

Graphplan

Time
Smith & Weld 
Koehler ?

PGP
Blum & Langford

Conformant
Smith & Weld

Sensory/Contingent
Weld, Anderson & Smith

?
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Expressive Languages

Negated preconditions
Disjunctive preconditions
Universally quantified preconditions, 
effects
Conditional effects
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Negated Preconditions

Graph expansion
P, ¬P mutex
Action deleting P must add ¬P at next level

Solution extraction
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Disjunctive Preconditions

Convert precondition to DNF
Disjunction of conjunctions

Graph expansion
Add action if any disjunct is present, 
nonmutex

Solution extraction
Consider all disjuncts
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Universal Quantification

Graph Expansion
Solution Extraction



36

Universal Quantification

Graph Expansion
Expand action with Herbrand universe
replace ∀block x   P(x)
with P(o17) ∧ P(o74) ∧ … ∧ P(o126)

Solution Extraction
No changes necessary
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Conditional Effects
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Full Expansion

in-keys  in-pay

in-keys  in-pay

in-keys  in-pay

in-keys  in-pay
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Factored Expansion
Treat conditional effects as primitive

“component” = <antecendant, consequent>  pair
STRIPS action has one component
Consider action A

Precond: p
Effect:

e 
(when q (f  ∧ ¬g))
(when (r ∧ s) ¬q)

A has three components:  antecedent       consequent 
p                  e  
p ∧ q                    f  ∧ ¬g
p ∧ r ∧ s              ¬q
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Changes to Expansion
Components C1 and C2 are mutex at level I if

The antecedants of C1 and C2 are mutex at I-1
C1, C2 come from different action instances, and the 
consequent of C1 deletes the antecedant of C2, or vice versa
∃ C, C1 induces C and C is mutex with C2

Intuitively, C1 induces C if it is impossible to execute C1 
without executing C. 

C1 and C are parts of same action instance
C1 and C aren’t mutex (antecedants not inconsistent)
The negation of C’s antecedant can’t be satisfied at level I-1
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Induced Mutex
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Revised Backchaining 
Confrontation

Subgoaling on negation of something


