
1

Graphplan

José Luis Ambite*

[* based in part on slides by Jim Blythe and Dan Weld]

2

Basic idea

Construct a graph that encodes
constraints on possible plans
Use this “planning graph” to constrain
search for a valid plan:

If valid plan exists, it’s a subgraph of the
planning graph

Planning graph can be built for each
problem in polynomial time

3

Problem handled by GraphPlan*

Pure STRIPS operators:
conjunctive preconditions
no negated preconditions
no conditional effects
no universal effects

Finds “shortest parallel plan”
Sound, complete and will terminate with
failure if there is no plan.

*Version in [Blum& Furst IJCAI 95, AIJ 97],
later extended to handle all these restrictions [Koehler et al 97]

4

Planning graph

Directed, leveled graph
2 types of nodes:

Proposition: P
Action: A

3 types of edges (between levels)
Precondition: P -> A
Add: A -> P
Delete: A -> P

Proposition and action levels alternate
Action level includes actions whose preconditions
are satisfied in previous level plus no-op actions
(to solve frame problem).

5

Rocket domain

6

Planning graph

…
…

…

7

Constructing the planning graph

Level P1: all literals from the initial state
Add an action in level Ai if all its
preconditions are present in level Pi

Add a precondition in level Pi if it is the
effect of some action in level Ai-1
(including no-ops)
Maintain a set of exclusion relations to
eliminate incompatible propositions and
actions (thus reducing the graph size)

P1 A1 P2 A2 … Pn-1 An-1 Pn

8

Mutual Exclusion relations

Two actions (or literals) are mutually
exclusive (mutex) at some stage if no
valid plan could contain both.
Two actions are mutex if:

Interference: one clobbers others’ effect or
precondition
Competing needs: mutex preconditions

Two propositions are mutex if:
All ways of achieving them are mutex

9

Mutual Exclusion relations

Inconsistent
Effects

Inconsistent
Support

Competing
Needs

Interference
(prec-effect)

10

Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage))
Actions:

Cook :precondition (cleanHands)
:effect (dinner)

Wrap :precondition (quiet)
:effect (present)

Carry :precondition
:effect (and (not (garbage)) (not (cleanHands))

Dolly :precondition
:effect (and (not (garbage)) (not (quiet)))

11

Dinner Date example

12

Dinner Date example

13

Observation 1

Propositions monotonically increase
(always carried forward by no-ops)

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

14

Observation 2

Actions monotonically increase

p

¬q

¬r

p

q

¬q

¬r

p

q

¬q

r

¬r

p

q

¬q

r

¬r

A A

B

A

B

15

Observation 3

Proposition mutex relationships monotonically decrease

p

q

r

…

A

p

q

r

…

p

q

r

…

16

Observation 4

Action mutex relationships monotonically decrease

p

q

… B

p

q

r

s

…

p

q

r

s

…

A

C

B

C

A

p

q

r

s

…

B

C

A

17

Observation 5

Planning Graph ‘levels off’.
After some time k all levels are identical
Because it’s a finite space, the set of
literals never decreases and mutexes
don’t reappear.

18

Valid plan

A valid plan is a planning graph where:
Actions at the same level don’t interfere
Each action’s preconditions are made true
by the plan
Goals are satisfied

19

GraphPlan algorithm

Grow the planning graph (PG) until all
goals are reachable and not mutex. (If PG
levels off first, fail)
Search the PG for a valid plan
If non found, add a level to the PG and
try again

20

Searching for a solution plan

Backward chain on the planning graph
Achieve goals level by level
At level k, pick a subset of non-mutex actions
to achieve current goals. Their preconditions
become the goals for k-1 level.
Build goal subset by picking each goal and
choosing an action to add. Use one already
selected if possible. Do forward checking on
remaining goals (backtrack if can’t pick non-
mutex action)

21

Plan Graph Search

If goals are present & non-mutex:
Choose action to achieve each goal
Add preconditions to next goal set

22

Termination for unsolvable problems

Graphplan records (memoizes) sets of
unsolvable goals:

U(i,t) = unsolvable goals at level i after stage t.

More efficient: early backtracking
Also provides necessary and sufficient
conditions for termination:

Assume plan graph levels off at level n, stage t > n
If U(n, t-1) = U(n, t) then we know we’re in a loop
and can terminate safely.

23

Dinner Date example

Initial Conditions: (and (garbage) (cleanHands) (quiet))
Goal: (and (dinner) (present) (not (garbage))
Actions:

Cook :precondition (cleanHands)
:effect (dinner)

Wrap :precondition (quiet)
:effect (present)

Carry :precondition
:effect (and (not (garbage)) (not (cleanHands))

Dolly :precondition
:effect (and (not (garbage)) (not (quiet)))

24

Dinner Date example

25

Dinner Date example

26

Dinner Date example

27

28

Planning Graph Example
Rocket problem

29

Plan Graph creation is Polynomial

Theorem 1:
The size of the t-level PG and the time to create
it are polynomial in

t = number of levels
n = number of objects
m = number of operators
p = propositions in the initial state

Max nodes proposition level: O(p+mlnk)
Max nodes action level: O(mnk)
k = largest number of action parameters, constant!

30

In-place plan graph expansion

p

q

r

s

…

A

B

C

D

…

0

2

4

4

1

3

3

5

∞

76

Props & actions: start level → start time
Mutex relations: end level → end time

31

Perverting Graphplan

ADL
Gazen & Knoblock
Koehler
Anderson, Smith & Weld
Boutilier

Uncertainty Rao
Graphplan

Graphplan

Time
Smith & Weld
Koehler ?

PGP
Blum & Langford

Conformant
Smith & Weld

Sensory/Contingent
Weld, Anderson & Smith

?

32

Expressive Languages

Negated preconditions
Disjunctive preconditions
Universally quantified preconditions,
effects
Conditional effects

33

Negated Preconditions

Graph expansion
P, ¬P mutex
Action deleting P must add ¬P at next level

Solution extraction

34

Disjunctive Preconditions

Convert precondition to DNF
Disjunction of conjunctions

Graph expansion
Add action if any disjunct is present,
nonmutex

Solution extraction
Consider all disjuncts

35

Universal Quantification

Graph Expansion
Solution Extraction

36

Universal Quantification

Graph Expansion
Expand action with Herbrand universe
replace ∀block x P(x)
with P(o17) ∧ P(o74) ∧ … ∧ P(o126)

Solution Extraction
No changes necessary

37

Conditional Effects

38

Full Expansion

in-keys in-pay

in-keys in-pay

in-keys in-pay

in-keys in-pay

39

Factored Expansion
Treat conditional effects as primitive

“component” = <antecendant, consequent> pair
STRIPS action has one component
Consider action A

Precond: p
Effect:

e
(when q (f ∧ ¬g))
(when (r ∧ s) ¬q)

A has three components: antecedent consequent
p e
p ∧ q f ∧ ¬g
p ∧ r ∧ s ¬q

40

Changes to Expansion
Components C1 and C2 are mutex at level I if

The antecedants of C1 and C2 are mutex at I-1
C1, C2 come from different action instances, and the
consequent of C1 deletes the antecedant of C2, or vice versa
∃ C, C1 induces C and C is mutex with C2

Intuitively, C1 induces C if it is impossible to execute C1
without executing C.

C1 and C are parts of same action instance
C1 and C aren’t mutex (antecedants not inconsistent)
The negation of C’s antecedant can’t be satisfied at level I-1

41

Induced Mutex

42

Revised Backchaining
Confrontation

Subgoaling on negation of something

