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Planning 

• What is classical planning? 

• Approaches 
– STRIPS/PDDL 

– State-Space Search 

– Planning Graphs 

– Situation Calculus 

– Partially Ordered Plans 

– Satisfiability 
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Situation calculus planning 

• Intuition:  Represent the planning problem using 

first-order logic 

– Situation calculus lets us reason about changes in 

the world 

– Use theorem proving to “prove” that a particular 

sequence of actions, when applied to the 

situation characterizing the world state, will lead 

to a desired result 
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Motivation 

• Recall problems with propositional logic.  So FOL? 

• The robot is in the kitchen.  

– in(robot,kitchen) 

• It walks into the living room. 

– in(robot,livingRoom) 

• Ooops… 

• in(robot,kitchen,2:02pm) 

• in(robot,livingRoom,2:17pm) 

• But what if you are not sure when it was?  

• We can do something simpler than rely on time 
stamps… 
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Representation of Time 

• Lots of other approaches besides situations, e.g. 

– Temporal Logic, Dynamic Logic 

– Maintaining Knowledge about Temporal 

Intervals 
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Situation Calculus 

• Logic for reasoning about changes in the state of the world 

• The world is described by 

– Sequences of situations of the current state 

– Changes from one situation to another are caused by 
actions 

• The situation calculus allows us to  

– Describe the initial state and a goal state 

– Build the KB that describes the effect of actions 
(operators) 

– Prove that the KB and the initial state lead to a goal state 

– Extracts a plan as side-effect of the proof 
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Situation Calculus Ontology 

• Actions:  terms, such as “forward” and 

“turn(right))” 

• Situations:  terms; initial situation s0 and all 

situations that are generated by applying an action 

to a situation.  result(a,s) names the situation 

resulting when action a is done in situation s. 
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Situation Calculus Ontology continued 

• Fluents:  functions and predicates that vary from 
one situation to the next.  By convention, the 
situation is the last argument of the fluent.  
~holding(robot,gold,s0) 

• Atemporal or eternal predicates and functions do 
not change from situation to situation.  gold(g1).  
lastName(wumpus,smith).  
adjacent(livingRoom,kitchen). 
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Modified Wumpus World 

• Won’t worry about agent’s orientation  

• Fluent predicates:  at(O,X,S) and holding(O,S) 

• Initial situation:  at(agent,[1,1],s0) ^ at(g1,[1,2],s0) 

• But we want to exclude possibilities from the initial 

situation too… 
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Initial KB 

• All O,X at(O,X,s0)  [O=agent ^ X = [1,1]) v 

(O=g1 ^ X = [1,2])] 

• All O ~holding(O,s0) 

• Eternals: 

– gold(g1) ^ adjacent([1,1],[1,2]) ^ 

adjacent([1,2],[1,1]). 
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Goal:  g1 is in [1,1] 

At(g1,[1,1],resultSeq( 

   [go([1,1],[1,2]),grab(g1),go([1,2],[1,1])], 

     s0) 

Or, planning by answering the query: 

     Exists S at(g1,[1,1],resultSeq(S,s0)) 

 

So, what has to go in the KB for such queries to be 

answered?... 
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Axioms for our Wumpus World 

• For brevity:  we will omit universal quantifiers that 

range over entire sentence.  S ranges over 

situations, A ranges over actions, O over objects 

(including agents), G over gold, and X,Y,Z over 

locations. 
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Possibility and Effect Axioms 

• Possibility axioms:   

– Preconditions  poss(A,S) 

 

• Effect axioms: 

– poss(A,S)  changes that result from that action 
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Possibility Axioms 

• The possibility axioms that an agent can  

– go between adjacent locations,  

– grab a piece of gold in the current location, and  

– release gold it is holding 

• Holding(g,s) => Poss(Release(g),s) 



15 

Effect Axioms 

• If an action is possible, then certain fluents will hold 

in the situation that results from executing the action 

– Going from X to Y results in being at Y 

– Grabbing the gold results in holding the gold 

– Releasing the gold results in not holding it 

• Poss(Release(g),s)=>~Holding(g,Result(Release(g),s)) 
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Frame Problem 

• We run into the frame problem 

• Effect axioms say what changes, but don’t say 

what stays the same 

• A real problem, because (in a non-toy domain), 

each action affects only a tiny fraction of all fluents  
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Frame Problem (continued) 

• One solution approach is writing explicit frame 

axioms, such as: 

At(O,X,S) ^ ~(O=agent) ^ ~holding(O,S)  

at(O,X,result(Go(Y,Z),S)) 
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Representational Frame Problem 

• What stays the same? 

• A actions, F fluents, and E effects/action (worst 

case).  Typically, E << F 

• Want O(AE) versus O(AF) solution 
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Solving the Representational 

Frame Problem 

• Instead of writing the effects of each action, 

consider how each fluent predicate evolves over 

time 

• Successor-state axioms: 

• Action is possible  

   (fluent is true in result state  

     action’s effect made it true v 

     it was true before and action left it alone) 
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Blocks world example 

• A situation calculus rule for the blocks world: 

– Clear (X, Result(A,S))   
    [Clear (X, S)   
        ( (A=Stack(Y,X)  A=Pickup(X)) 
         (A=Stack(Y,X)  (holding(Y,S)) 
         (A=Pickup(X)  (handempty(S)  ontable(X,S)  clear(X,S))))] 
     [A=Stack(X,Y)  holding(X,S)  clear(Y,S)] 
     [A=Unstack(Y,X)  on(Y,X,S)  clear(Y,S)  handempty(S)] 
     [A=Putdown(X)  holding(X,S)] 

• English translation: A block is clear if (a) in the previous state it 
was clear and we didn’t pick it up or stack something on it 
successfully, or (b) we stacked it on something else successfully, 
or (c) something was on it that we unstacked successfully, or (d) 
we were holding it and we put it down. 

• Whew!!! There’s gotta be a better way! 



21 

Situation calculus planning: Analysis 

• This is fine in theory, but remember that problem solving 

(search) is exponential in the worst case 

• Also, resolution theorem proving only finds a proof (plan), 

not necessarily a good plan 

• So we restrict the language and use a special-purpose 

algorithm (a planner) rather than general theorem prover 
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Plan-space planning 

• An alternative is to search through the space of plans, 

rather than situations. 

• Start from a partial plan which is expanded and refined 

until a complete plan that solves the problem is generated.  

• Refinement operators add constraints to the partial plan 

and modification operators for other changes.  

• We can still use STRIPS-style operators:  

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 

Op(ACTION: RightSock, EFFECT: RightSockOn) 

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 

Op(ACTION: LeftSock, EFFECT: leftSockOn) 

could result in a partial plan of  

[RightShoe, LeftShoe]  
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Partial-order planning 

• A linear planner builds a plan as a totally ordered sequence 

of plan steps 

• A non-linear planner (aka partial-order planner) builds up 

a plan as a set of steps with some temporal constraints  

– constraints of the form S1<S2 if step S1 must comes before S2.  

• One refines a partially ordered plan (POP) by either: 

– adding a new plan step, or 

– adding a new constraint to the steps already in the plan. 

• A POP can be linearized (converted to a totally ordered plan) 

by topological sorting 
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Least commitment 

• Non-linear planners embody the principle of least 

commitment  

– only choose actions, orderings, and variable bindings that are 

absolutely necessary, leaving other decisions till later 

– avoids early commitment to decisions that don’t really matter 

• A linear planner always chooses to add a plan step in a 

particular place in the sequence  

• A non-linear planner chooses to add a step and possibly 

some temporal constraints 
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Non-linear plan 

• A non-linear plan consists of 

(1) A set of steps {S1, S2, S3, S4…}  

Each step has an operator description, preconditions and post-conditions 

(2) A set of causal links { … (Si,C,Sj) …} 

Meaning a purpose of step Si is to achieve precondition C of step Sj 

(3) A set of ordering constraints { … Si<Sj … } 

if step Si must come before step Sj 

• A non-linear plan is complete iff 

– Every step mentioned in (2) and (3) is in (1) 

– If Sj has prerequisite C, then there exists a causal link in (2) of the 

form (Si,C,Sj) for some Si 

– If (Si,C,Sj) is in (2) and step Sk is in (1), and Sk threatens (Si,C,Sj) 

(makes C false), then (3) contains either Sk<Si or Sj>Sk 
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The initial plan 

Every plan starts the same way 

S1:Start 

S2:Finish 

Initial   State 

Goal   State 
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Trivial example 

Operators: 

Op(ACTION: RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 

Op(ACTION: RightSock, EFFECT: RightSockOn) 

Op(ACTION: LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 

Op(ACTION: LeftSock, EFFECT: leftSockOn) 

 

S1:Start 

S2:Finish 

RightShoeOn  ^ LeftShoeOn 

Steps: {S1:[Op(Action:Start)], 

             S2:[Op(Action:Finish, 

    Pre: RightShoeOn^LeftShoeOn)]} 

 Links: {} 

Orderings: {S1<S2} 
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Solution 

Start 

Left 

Sock 

Right 

Sock 

Right 

Shoe 

Left 

Shoe 

Finish 
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POP constraints and search heuristics 

• Only add steps that achieve a currently unachieved 

precondition 

• Use a least-commitment approach:  

– Don’t order steps unless they need to be ordered 

• Honor causal links S1  S2 that protect a condition c:  

– Never add an intervening step S3 that violates c 

– If a parallel action threatens c (i.e., has the effect of negating or 

clobbering c), resolve that threat by adding ordering links: 

• Order S3 before S1 (demotion) 

• Order S3 after S2 (promotion) 

 

c 
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Partial-order planning example 

• Goal: Have milk, bananas, and a drill 
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Threat Demotion Promotion 

Resolving threats 
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Planning as Satisfiability 

* Based on slides by Alan Fern, Stuart Russell and Dana Nau 

 

Planning as propositional satisfiability 
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Architecture of a SAT-based Planner 

Compiler 

(encoding) 

satisfying 

model 
Plan 

Increment plan length 

If unsatisfiable 

Problem  

Description 

• Init State 

• Goal 

• Actions 

CNF 
Simplifier 

(polynomial  

inference) 

Solver 

(SAT engine/s) 
Decoder 

CNF 

Propositional formula in conjunctive  

normal form (CNF) 
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Propositional Satisfiability 

• A formula is satisfiable if it is true in some model 

– e.g.   A  B,  C 

• A formula is unsatisfiable if it is true in no models 

– e.g.   A A 

• Testing satisfiability of CNF formulas is a famous NP-

complete problem   
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Propositional Satisfiability 

• Many problems (such as planning) can be naturally encoded 

as instances of satisfiability 

• Thus there has been much work on developing powerful 

satisfiability solvers  

– these solvers work amazingly well in practice (we will touch on 

some later) 
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Encoding Planning as Satisfiability: 

Basic Idea 

• Bounded planning problem (P,n): 

– P is a planning problem; n is a positive integer 

– Find a solution for P of length n 

• Create a propositional formula that represents: 

– Initial state 

– Goal  

– Action Dynamics 

   for n time steps 

• We will define the formula for (P,n) such that: 
  1)  any model (i.e. satisfying truth assignment) of the 
       formula represent a solution to (P,n)  
  2)  if (P,n) has a solution then the formula is satisfiable  
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Encoding Planning Problems 

• We can encode (P,n) so that we consider either partially or totally 

ordered plans 

– for simplicity we consider totally-ordered plans 

• Encode (P,n) as a formula  such that 

a0, a1, …, an–1  is a solution for (P,n) 

 if and only if 

 can be satisfied in a way that makes the fluents  

a0, …, an–1 true 

•  will be conjunction of many other formulas … 
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Formulas in  

• Formula describing the initial state: (let E be the set of possible 

facts in the planning problem) 

    /\{e0  | e  s0}    /\{ e0  | e  E – s0 } 

Describes the complete initial state (both positive and negative fact) 

 

– E.g.      on(A,B,0)  on(B,A,0) 

• Formula describing the goal: (G is set of goal facts) 

    /\{en  | e  G} 

says that the goal facts must be true in the final state at timestep n 

– E.g.      on(B,A,n) 

• Is this enough?  

– Of course not. The formulas say nothing about actions. 
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Formulas in  
• For everya and timestep i, formula describing what fluents must be 

true if a  action were the i’th step of the plan: 
– ai     /\ {ei  | e  Precond(a)}, a’s preconditions must be true    

– ai     /\ {ei+1  |  e  ADD(a)}, a’s ADD effects must be true in i+1 

– ai     /\ { ei+1  |  e  DEL(a)}, a’s DEL effects must be false in i+1 

• Complete exclusion axiom: 
– For all actions a and b and timesteps i, formulas saying a and b can’t occur at 

the same time 

      ai    bi 

– this guarantees there can be only one action at a time 

 

• Is this enough? 
– The formulas say nothing about what happens to facts if they are not effected 

by an action 

– This is the frame problem again. 
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Frame Axioms 

• Frame axioms: 

– Formulas describing what doesn’t change between steps i and i+1 

• Several ways to write these (your book shows another way) 

– Here I show a alternative that typically works best in practice 

• explanatory frame axioms 

– One axiom for every possible fact e at every timestep i 

– Says that if e changes truth value between si and si+1,  

 then the action at step i must be responsible: 

       ei  ei+1  V{ai | e in ADD(a)} 

   If e became true then some action must have added it 

        ei  ei+1  V{ai | e in DEL(a)} 

   If e became false then some action must have deleted it 
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Example 
• Planning domain: 

– one robot r1 

– two adjacent locations l1, l2 

– one operator (move the robot) 

• Encode (P,n) where n = 1 

 

– Initial state: {at(r1,l1)} 

 Encoding: at(r1,l1,0)  at(r1,l2,0) 

 

– Goal:  {at(r1,l2)} 

 Encoding: at(r1,l2,1) 

 

– Action Schema: see next slide 
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Example (continued) 
• Schema: move(r, l, l’) 

       PRE: at(r,l) 

       ADD: at(r,l’) 

                    DEL: at(r,l) 

 Encoding: (for actions move(r1,l1,l2) and 
                   move(r1,l2,l1) at time step 0) 

 move(r1,l1,l2,0)  at(r1,l1,0) 

   move(r1,l1,l2,0)  at(r1,l2,1) 

   move(r1,l1,l2,0)  at(r1,l1,1) 

 

 move(r1,l2,l1,0)  at(r1,l2,0) 

   move(r1,l2,l1,0)  at(r1,l1,1) 

   move(r1,l2,l1,0)  at(r1,l2,1) 

 



49 

Example (continued) 

• Schema: move(r, l, l’) 
       PRE: at(r,l) 

       ADD: at(r,l’) 

                        DEL: at(r,l) 

 

• Complete-exclusion axiom: 
 move(r1,l1,l2,0)  move(r1,l2,l1,0) 

 

• Explanatory frame axioms: 
 at(r1,l1,0)  at(r1,l1,1)  move(r1,l2,l1,0) 

 at(r1,l2,0)  at(r1,l2,1)  move(r1,l1,l2,0) 

 at(r1,l1,0)  at(r1,l1,1)  move(r1,l1,l2,0) 

 at(r1,l2,0)  at(r1,l2,1)  move(r1,l2,l1,0) 
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Complete Formula for (P,1) 

[ at(r1,l1,0)  at(r1,l2,0) ]  

at(r1,l2,1)  

[ move(r1,l1,l2,0)  at(r1,l1,0) ]   

[ move(r1,l1,l2,0)  at(r1,l2,1) ]  

[ move(r1,l1,l2,0)  at(r1,l1,1) ]  

[ move(r1,l2,l1,0)  at(r1,l2,0) ]  

[ move(r1,l2,l1,0)  at(r1,l1,1) ]  

[ move(r1,l2,l1,0)  at(r1,l2,1) ]  

[ move(r1,l1,l2,0)  move(r1,l2,l1,0) ]  

[ at(r1,l1,0)  at(r1,l1,1)  move(r1,l2,l1,0) ]  

 [ at(r1,l2,0)  at(r1,l2,1)  move(r1,l1,l2,0) ]  

 [ at(r1,l1,0)  at(r1,l1,1)  move(r1,l1,l2,0) ]  

 [ at(r1,l2,0)  at(r1,l2,1)  move(r1,l2,l1,0) ]  

Convert to CNF and give to SAT solver. 
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Extracting a Plan 
• Suppose we find an assignment of truth values that satisfies 

. 

– This means P has a solution of length n 

• For i=0,…,n-1, there will be exactly one action a such that 

ai = true 

– This is the i’th action of the plan. 

• Example (from the previous slides): 

–   can be satisfied with move(r1,l1,l2,0) = true 

– Thus move(r1,l1,l2,0)  is a solution for (P,0) 

• It’s the only solution - no other way to satisfy   
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Planning Benchmark Test Set 
• Extension of Graphplan test set 

• blocks world - up to 18 blocks, 1019 states 

• logistics - complex, highly-parallel transportation 
domain.   

Logistics.d: 

– 2,165 possible actions per time slot 

– 1016 legal configurations (22000 states) 

– optimal solution contains 74 distinct actions over 14 time slots 

• Problems of this size never previously handled by 
general-purpose planning systems 
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Scaling Up Logistics Planning 
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What SATPLAN Shows 

• General propositional reasoning can compete with state 

of the art specialized planning systems 

– New, highly tuned variations of DP surprising powerful 

– Radically new stochastic approaches to SAT can provide very 

low exponential scaling 

• Why does it work? 

– More flexible than forward or backward chaining 

– Randomized algorithms less likely to get trapped along bad 

paths 
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Discussion 

• How well does this work? 

– Created an initial splash but by itself, not very practical without help 

in choosing good encoding 

• However combining SatPlan with planning graphs can 

overcome this problem 


