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ABSTRACT
An increasing number of large-scale server clusters are be-
ing deployed in data centers for supporting many different
web-based application services in a seamless fashion. In this
scenario, the rising energy costs for keeping up those web
clusters is becoming an important concern for many busi-
ness. In this paper we present an optimization solution for
power and performance management in a platform running
multiple independent web applications. Our approach as-
sumes a virtualized server environment and includes an op-
timization model and strategy to dynamically manage the
cluster power consumption, while meeting the application’s
workload demands.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques; C.1.4
[Parallel Architectures]: Distributed architectures

General Terms
Algorithms, Management, Performance, Experimentation

Keywords
Power-aware computing, combinatorial optimization, server
virtualization, web server clusters

1. INTRODUCTION
An increasing number of large server clusters are being

deployed in data centers supporting many different web-
based application services in a seamless, transparent fashion.
These architectures are becoming common in utility/cloud
computing platforms [8, 5], such as Amazon EC2 and Google
AppEngine. These platforms may have great power de-
mands, incurring in high energy costs and also indirectly
∗This work was partially supported by CNPq and Faperj.
†This material is based on work supported by NSF under
grants ANI-0325353, CCF-0811295 and CCF-0803180.

contributing to increase CO2 generation and then to the en-
vironmental deterioration [17]. Thus, the energy consumed
for keeping these server systems running became a very im-
portant concern, which in turn, requires major investigation
of techniques to improve the energy efficiency of their com-
puting infrastructure [3, 6].
In general, to allow hosting multiple independent appli-

cations, these platforms rely on virtualization techniques to
enable the usage of different virtual machines (i.e., operat-
ing system plus software applications) on a single physical
server. Virtualization provides a means for server consol-
idation and allows for on demand migration and dynamic
allocation of these virtual machines, which run the appli-
cations, to physical servers [16, 27]. It is recognized that
the dynamic consolidation of application workloads, through
live migration of virtual machines, helps to increase server
utilization, allowing to reduce the use of computer resources
and the associated power demand [16, 23]. Furthermore,
server consolidation can be combined with dynamic voltage
and frequency scaling capabilities offered by current proces-
sors to get even better results.
In this paper, we propose an optimization solution for

power and performance management in virtualized server
clusters. We deal with the problem of selecting at runtime a
power-efficient configuration and a corresponding mapping
of the multiple applications running on top of virtual ma-
chines to physical servers. The optimization decision also in-
cludes selecting the best voltage/frequency combination for
each physical server. To scale the solution over time, con-
sidering that the applications have individual time-varying
workloads, our optimization strategy enables the virtualized
server system to react to load variations and adapt its con-
figuration accordingly.
The paper is organized as follows. The mathematical for-

mulation and dynamic strategy of the underlying optimiza-
tion problem are presented in Section 2. The system model
and architecture used to apply our optimization proposal is
described in Section 3. In Section 4, we experiment our op-
timization approach through simulations driven by actual
workload traces. Section 5 summarizes related work and
Section 6 concludes the paper.

2. OPTIMIZATION MODEL
The cluster optimization problem that we consider is to

determine the most power efficient configuration (that is,
which servers must be active and their respective CPU fre-
quencies) that can handle a certain workload. The major
goal of our approach is to reduce power consumption in the
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cluster while meeting performance requirements. The un-
derlying mathematical formulation for minimizing the power
consumed in the virtualized cluster problem is given by a
mixed integer programming (MIP) model.
In a virtualized environment, the applications are imple-

mented as virtual machines (VM) which are assigned to
physical servers. In our model, multiple different VMs can
be mapped (consolidated) to a single server. We assume
that applications in the cluster can be mapped to VMs and
these to servers in two different ways, as follows. We assume
at first (see Section 2.2) that an application runs on top of
only one VM running on one physical server at a time. Alter-
natively, we present in Section 2.2.1 the optimization model
that allows an application to be implemented using multiple
VMs, which are mapped and distributed to different servers
(see Figure 1). For example, a particular application work-
load, such as those including user sessions, can be “split” and
executed in different servers. Note that this assumption may
not hold for every application workload. We also introduce
in our model a possible switching and migration penalty to
avoid frequent and undesirable turning servers on/off and
disruptive VM migration reconfigurations, described in Sec-
tion 2.2.2.

Server 1

VM app1

VM app2

VM1 app3

Server 2

VM2 app3

(a)

Server 1

VM app1

VM app2

Server 2

VM app3

(b)

Figure 1: Application workload mapping: (a) ev-
ery application runs in only one VM instance on
a given server, and (b) one application may run in
more than one VM instance, whereas these VMs are
balanced among multiple servers

As some of the input variables for the optimization may
change over time, such as the application workload vector,
a new instance of the optimization problem is constructed
and solved periodically. Currently, to achieve the necessary
scalability within a bound processing time, for all inputs,
we rely on the use of features, such as solution time limit
and optimal gap tolerance, provided by state-of-art solver
packages, such as ILOG CPLEX [10]. For example, the time
limit feature sets the maximum time, in seconds, for a call to
the optimizer and it returns the optimal or the best known
solution at the end of the time limit. We are also working
on heuristic techniques combined with our exact approach
(based on our MIP formulation) for this particular problem.

2.1 Notation
Before describing the optimization model, we introduce

the following notation. Let N be the set of physical servers
in the cluster and Fi the set of frequencies for each server
i ∈ N . Let M be the set of applications intended to run
on the virtualized cluster. The parameter capij represents
the maximum performance or capacity (e.g., requests/sec)

of the server i running at CPU frequency j ∈ Fi. The pa-
rameters pbij and piij denote the busy and active-idle power
cost, respectively, to run server i at frequency j, where the
αij variable denotes the utilization of server i running at
frequency j. For each application k ∈ M , we define the
parameter dk to represent the workload demand of that ap-
plication. In practice, because load variations are small in
short time intervals, the application demand vector can be
generated by monitoring the load (in requests per second)
for each application in a front-end machine in a server clus-
ter (see Section 3). The following decision variables are de-
fined: xijk is a binary variable that denotes whether server
i uses frequency j to run application k (xijk = 1), or not
(xijk = 0); yij is a binary variable that denotes whether
server i is active at frequency j (yij = 1), or not (yij = 0).

2.2 Problem formulation

Minimize
X
i∈N

X
j∈Fi

αij · pbij + (yij − αij) · piij (1)

Subject to
X
k∈M

dk · xijk ≤ capij · yij ∀i ∈ N, ∀j ∈ Fi (2)X
i∈N

X
j∈Fi

xijk = 1 ∀k ∈M (3)

X
j∈Fi

yij ≤ 1 ∀i ∈ N (4)

αij ≤ yij ∀i ∈ N, ∀j ∈ Fi (5)

xijk ∈ {0, 1}, yij ∈ {0, 1}, αij ∈ [0, 1]

The objective function given by Equation (1) is to find a
cluster configuration that minimizes the overall server clus-
ter cost in terms of power consumption. The power con-
sumption for a given server i is the combination of the busy
power pbij and the idle (but active) power piij for the se-
lected CPU frequency j.
The constraints (2) prevent a possible solution in which

the demand of all applications k ∈ M running on a server
i at frequency j exceed the capacity of that server. The
constraints (3) guarantee that a server i at frequency j is
assigned to a given application k. The constraints (4) are
defined so that only one frequency j on a given server i
can be chosen. The constraints (5) are used to bind the
decision variable yij with the αij variable in the objective
function. The solution is thus given by the decision variable
xijk, where i is a server reference, j is the server’s status (i.e.,
its operating frequency or inactive status, when j = 0), and
k represents the respective allocated application.
Our virtualized cluster configuration problem is a variant

of the one dimensional variable sized bin packing problem
[7], which is defined as follows. Suppose we are given a set
B of different bin types (servers), where each bin type i ∈ B
has capacity Wi and a fixed cost Ci. The problem involves
packing a set J of items (applications), where each item
j ∈ J has a weight (demand) wj , into a minimum-cost set
of bins. In addition, the total weight of the allocated items
into a bin cannot exceed its capacity. As a generalization of
the classic bin-packing problem, this problem is known to
be NP-hard [7].
An important difference between our problem and the

original variable-sized bin packing is that in our case we
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have, for each bin type, the possibility to choose among dif-
ferent options (CPU speeds) in a given bin (server). How-
ever, as shown previously in constraints (3) the MIP model,
only one CPU speed on a given server can be chosen.

2.2.1 Application workload balancing
The previously described model cannot be applied to ap-

plication workloads that demand more capacity than the
supported by a single server. To solve this issue, we propose
an extension to the optimization model. In practice, the pro-
posed extension means that each application may be associ-
ated with multiple VMs running on different servers. From
the original optimization model, we replace constraints (2)
and (3) with the constraints (6) and (7), respectively, which
are defined as follows:

X
i∈N

X
j∈Fi

capij · xijk ≥ dk ∀k ∈M (6)

X
k∈M

xijk ≤ yij ∀i ∈ N,∀j ∈ Fi (7)

We also modify the decision variable xijk ∈ [0, 1] to rep-
resent the utilization factor of an application k in a given
server i that runs at frequency j. Note that this modifica-
tion adds a relaxation to the optimization problem, since
the x decision variable is now continuous. One positive side
effect is that it makes the MIP problem a bit easier to be
solved, while still maintaining NP-hardness.
To handle the incoming workloads, as stated by the con-

straints (6), for each application k, the total execution ca-
pacity available across all servers (to be selected) which runs
that application must be greater than or equal to the given
application demand dk. The constraints (7) guarantee that
variable yij equals one if a server i at frequency j is assigned
to handle any portion of a given workload for application k.
That is, the server will be on if there is at least one workload
application running on it.

2.2.2 Modeling switching and migration costs
In a real server cluster environment, dynamic configura-

tions in the cluster may be subjected to switching costs, for
example, in terms of the power consumed while a machine
is being turned on/off. To handle this issue, we incorporate
a penalty value in our optimization model to represent the
overhead of turning machines on/off. Specifically, we mod-
ify the objective function of the original optimization model,
Equation (1), as follows:

Minimize
X
i∈N

X
j∈Fi

αij · pbij + (yij − αij) · piij

+swt_cost(Uij , yij) (8)
+ mig_cost(Aijk, xijk)

The modified objective function given by Equation (8) has
new terms to account for switching and migration costs. To
calculate a transition cost, we have included in the model a
new parameter input Uij to denote the current cluster usage
in terms of which machines are turned on and off; that is,
Uij = 1 if machine i is running at speed j. Similarly, the new
parameter input Aijk denotes which application is currently
associated with which server-frequency.

More precisely, we may define the switching cost function
as follows: swt_cost(Uij , yij) = yij · (1−Uij) ·ON_P . The
constant ON_P represents a power overhead penalty for
turning a machine on (if it was off), which means an addi-
tional power consumed to boot a server machine. Currenly,
we do not consider the penalty of changing frequencies. Ac-
tually, for a given server i ∈ N , if Uij = 1 for at least one
j ∈ Fi, we set Uij = 1 for all j ∈ Fi to avoid taking into
account frequency switching costs. In addition, we assume
that both server switching on/off and migration penalties
can be estimated in a real server cluster. For example, the
cost of VM migration could be measured a priori and stored
in a table using the approach proposed in [27].

2.3 Optimization control policy
Dynamic optimization behavior is attained by periodically

monitoring the proper inputs of the optimization model and
solving a new optimal configuration given the updated val-
ues of the inputs. In other words, as some of the input vari-
ables may change over time, such as the application work-
load vector, a new instance of the optimization problem is
constructed and solved at run-time. We assume that the
workload does not change radically often and it is mostly
stable during the specified control period.
Particularly, we are able to devise a control loop of the

following form: (a) monitor and store the most recent val-
ues of the optimization input variables, (b) construct and
solve a new optimization problem instance, yielding a new
optimal configuration and (c) apply the changes in the sys-
tem, transitioning the system to a new state given by the
new optimized configuration. The details are given in the
following algorithm.

do periodically:
// 1. Input variables
d = getDemandVector()
curUsage = getCurrentUsage()
curAlloc = getCurrentAlloc()

// 2. Run optimization
newUsage, newAlloc = bestConfig(d)

// 3. Generate usage and alloc sets for changes
chgUsage = sort(diff(newUsage, curUsage))
chgAlloc = sort(diff(newAlloc, curAlloc))

// 4. Power management operations
for (i, j) in chgUsage:

if j == 0:
turnOff(i)

else:
if curUsage[i] == 0:

turnOn(i)
setFreq(i, j)

// 5. Virtualization management operations
for (k, i) in chgAlloc:

if i == 0:
stopVm(k, curAlloc[k])

else:
if curAlloc[k] == 0:

startVm(k, i)
else:

migrateVm(k, curAlloc[k], i)
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The control loop outlined above relies on the mathemati-
cal formulation described in Section 2.2 to solve the cluster
configuration problem. The key idea of the optimization
control policy is to periodically select and enforce the lowest
power consumption configuration that maintains the cluster
within the desired performance level, given the time-varying
incoming workload of multiple applications.
The input variables for the control loop algorithm, de-

scribed in the step 1, are: the monitored and updated appli-
cation demand (load) vector, the current server configura-
tion and application allocation. The bestConfig operator,
at algorithm step 2, returns a cluster usage and allocation
solution, where newUsage represents an usage configuration
of servers and their respective status (i.e., its operating fre-
quency or inactive), and newAlloc represents which appli-
cation has to be associated with each server.
In fact, the configuration to be imposed is a difference be-

tween two sets: the new configuration and the current con-
figuration solution. For example, suppose the current cluster
usage is curUsage={(1,0),(2,2),(3,0)} and the new one
is newUsage={(1,0),(2,0),(3,4)}. Thus, we need to per-
form a change in the system given by chgUsage = newUsage
− curUsage = {(2,0),(3,4)}. That is, we need to turn off
server 2, and turn on server 3 at the frequency 4. To handle
this, we apply a diff operator in the usage and allocation
solutions provided by the optimization operator (see the al-
gorithm step 3).
The order in which the operations are executed may lead

to a problematic behavior. Specifically, in the example above,
if the new usage configuration shutdowns the current active
server before the new server is ready to respond the requests,
as the server booting time is not instantaneous, the cluster
will be in an unavailable state. To solve this issue, we simply
sort the new cluster usage representation so that the oper-
ation to shutdown servers is always performed at last, and
the operations to increase frequency and turn on servers,
respectively, are performed at first. This scheme can be
similarly adopted to the new allocation representation, in
which the operations to start and migrate virtual machines
are performed at first. To achieve this, we make use of a
sort operator in the configuration algorithm, as shown in
algorithm step 3.
In the step 4, we employ dynamic configurations for power

optimization which consists of (a) turning servers off in pe-
riods of low activity and turning them back on when the
demand increases, and (b) exploiting the dynamic voltage
and frequency scaling capability of current processor archi-
tectures to further reduce power consumption. Finally, to
manage the application services (which are associated to vir-
tual machines), we rely on configuration operators to start,
stop, and migrate the virtual machines in the server cluster,
such as those described in the algorithm step 5.
There may be some practical concerns in applying the

control loop algorithm in a real cluster environment. For
example, a sequential way of executing the configuration
operations may be adopted. This would help to avoid in-
consistency among the execution of multiple operations, for
example, guaranteeing that the servers will be turned on be-
fore the migration operations are requested. Additionally,
the time delay associated with effecting the configurations
must be taken into account, such as turning a server on/off.
Execution example. As an example of optimization

execution, we may assume that the demand vector (in re-

quest/sec) for three different applications is d = [45, 120, 17].
After solving the optimization problem, we have an abstract
configuration solution given by a vector of tuples (i, j, k),
where i is a server, j is the respective CPU speed, and k is
the allocated application, defined by conf = [(1, 3, 1), (1, 3, 2),
(1, 3, 3)]. This means that, application 1, 2 and 3 are hosted
by server 1 at frequency 3, which is its maximum frequency,
while the other servers are turned off.
At another execution snapshot, say d = [45, 170, 17], the

new configuration solution is defined by conf = [(2, 1, 1),
(1, 3, 2), (1, 3, 3)]. This means that if the demand for appli-
cation 2 has been increased from 120 to 170, we need to
turn on a new server and migrate application 1 to this new
server 2 that will run at frequency 1 (i.e., the minimum fre-
quency). In case the demand for application 2 decreases,
we may turn off server 2 to save power and migrate back
application 1 to server 1. This particular example does not
consider the overhead of switching servers on/off.

3. SYSTEM MODEL / ARCHITECTURE
In our server cluster, we need to maintain two corre-

lated objectives. First, we aim to guarantee some quality-
of-service requirements for the cluster (e.g., by controlling
average cluster load or request response time). Second, to
reduce costs, the set of currently active servers and their re-
spective processor’s speeds should be configured to minimize
the power consumption.
The architecture (shown in Figure 2) consists of a clus-

ter of replicated web servers. The cluster presents a single
view to the clients through a special component termed dis-
patcher server (also called front-end or load balancer), which
distributes incoming requests among the actual servers that
process the requests (also known as back-ends or workers).
Our optimization scheme can be implemented and deployed
in the dispatcher server or in a dedicated server.
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Figure 2: System architecture

In this work, we consider m = 3 virtualized application
services to be hosted by a cluster with n = 5 physical servers.
The system load is measured by the number of incoming re-
quests per second in the cluster. Because we are interested
in the macro behavior of the dynamic optimization, our clus-
ter model is simplified in that we assume that there is no
state information to be maintained for multiple requests.
Specifically, we measured the capacity of the servers, for

each frequency, in terms of the maximum number of requests
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per second (req/s) that they can handle at 100% CPU uti-
lization. To generate the benchmark workload, we used the
httperf tool, where each HTTP request is a PHP script with
a fixed average execution time. The power consumption of
a server, for each available discrete frequency, varies linearly
with its CPU utilization. Using the LabVIEW software envi-
ronment, coupled with a USB based data acquisition device,
we measured different active-idle and busy power values for
each frequency to build our power model. This power esti-
mation works well because servers have near-linear power
response between active-idle and busy (100% utilization)
[22]. That is, we are able to measure only active-idle and
busy states to achieve very good estimates of power used at
any utilization level for a given workload. Figure 3 shows
an example of power and performance model for a machine
measured in our cluster.

Figure 3: Power and performance model

Depending on the system requirements, a relationship be-
tween cluster load and response time might be established,
for example, assuming queue models or control theory [2,
28]. Leveraging our optimization strategy, we can tailor our
controller, for example, to monitor the request response time
and to adapt the cluster capacity accordingly. These ap-
proaches could be used to provide soft real-time guarantees
in server clusters, in which the requests processing time have
a specified deadline. We intend to incorporate the response
time control in our approach implementation as future work.

3.1 Dynamic optimization support
Following this control loop paradigm, we have proposed

and developed a framework [18], which works on top of an
abstract configuration model of the system and provides gen-
eral configuration mechanisms: (1) to specify and monitor
run-time properties of an executing system, (2) evaluate the
model for system’s requirements violation and (3) perform
adaptations on the system configuration to maintain the sys-
tem behavior within acceptable bounds. The dynamic con-
figurations are performed under guidance of scripts written
in a high-level configuration language, designed separately
from the target system.
In our approach, the monitoring and dynamic configura-

tion mechanisms (used by our optimization policy in Section
2.3) can be implemented in terms of an application program-
ming interface (API) given by the system support level (see
Figure 4). For example, the Apache web server [24] supports
an API to enable developers to extend a server with their
own extension modules. The Xen hypervisor [1] also pro-
vides capabilities and mechanisms to monitor and manage
virtual machines in a server cluster by means of an API.
The key idea of an API is that it specifies an abstract and

well-defined interface to control the behavior of the system,

Figure 4: API support for dynamic optimization

which builds on lower-level mechanisms at the system level.
A desired feature for an API is that it can be called from
several programming languages and is available as a remote
procedure call, such as the XML-RPC protocol.
Our optimization approach encapsulates most of the re-

quired functionality for dynamic configuration in terms of an
API and provide generic configuration operators. This, in
turn, enables the dynamic optimization logic to be described
in a more appropriate way by using a number of high-level
constructs (cf. Section 2.3). Examples of our API and op-
erators include a call to a configuration operator, termed
bestConfig, which encapsulates an optimization algorithm
for solving the cluster configuration problem.

4. PROPOSAL EVALUATION
To evaluate our optimization proposal, we have carried

out a set of simulation experiments using description of the
cluster environment described in Section 3. The optimiza-
tion problem formulation was implemented using the solver
CPLEX 11 [10], which employs very efficient algorithms
based on the branch-and-cut exact method [19] to search for
optimal configuration solutions. The simulations were per-
formed in an Intel Core 2 Quad 2.83 GHz with 8GB of RAM
memory running Ubuntu Linux (kernel version 2.6.27). In
the simulation results, we adopted a control loop of one sec-
ond interval, where the optimization worst-case execution
time was about 70 ms (Section 4.1.3), considering our study
case of 3 applications and 5 physical servers (Section 3).

4.1 Simulation results
We generated three distinct workload traces using the

1998 World Cup Web logs to characterize the multiple ap-
plications in the cluster. The applications within the cluster
can have a wide range of request demands, as shown in Fig-
ure 5. The workloads are spaced by 1 second, approximately
30 minutes in duration. We adapted the original workload
data to fit our cluster capacity, which is measured in requests
per second.
The maximum capacity of our cluster setup is 745 req/s,

when all servers are turned on at full CPU speed. The com-
bined workload curves of the three applications reach a peak
of 734 req/s at time around 470s (see Figure 5), which rep-
resents 98% of the maximum capacity of our cluster.

4.1.1 Dynamic optimization execution
In our simulation, we assume that App1, App2, and App3

services can be distributed and balanced among all servers
in the cluster. Thus, we adopt the modified optimization
formulation described in Section 2.2.1. For instance, the
App1 service at the workload time around 700s demands a
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Figure 5: Workload traces for three different appli-
cations using HTTP logs from WC98

performance of more than 500 req/s. The maximum perfor-
mance achieved by using a single machine in the cluster is
235 req/s, which corresponds to the 5th server running at
maximum CPU frequency.
The simulation execution results are given in Figure 6.

These results were plotted in 30 second intervals to help in
visualizing the switching activities. The upper plot shows
the configuration changes (frequency switching) for all servers
in the cluster. If the operating frequency for a server is zero,
it is turned off. In the bottom plot, we can observe the opti-
mized allocation of the applications in the cluster along the
simulation. For example, from time 0s to 57s, the allocation
set {1, 2, 3} is associated with the 5th server, meaning that
all the three applications are consolidated on that server
while the other servers can be turned off. At time around
470s, all servers are turned on to handle the highest peak
for the combined workloads.

4.1.2 Energy savings
We mainly evaluated the effectiveness of our approach in

terms of the percentage of energy consumption reduction
in the cluster as compared to the Linux on-demand and
performance CPU governors. The performance governor
keeps all servers turned on at full speed to handle peak load
and dynamic optimization is not conducted. The ondemand
governor allows for managing the CPU frequency depend-
ing on system utilization, but does not include server on/off
mechanisms.
We implemented by means of simulation the ondemand

policy based on the algorithm described in [25]. The basic
idea is as follows: If current utilization is more than an up
threshold (80%), the policy increases the frequency to the
maximum. Whenever a low utilization (less than 20%) is
observed, the policy jumps directly to the lowest frequency
that can keep the system utlization at 80%.
The allocation sets for the performance and ondemand

governors are statically configured in this way: Server 1
hosts {App2}; Server 2 hosts {App3}; Server 3 hosts {App1},
Server 4 hosts {App1}; Server 5 hosts {App1, App2, App3}.
The respective allocation shares are defined as follows: App1
uses 100% of Server 3, 100% of Server 4 and and 13.1% of
Server 5; App2 uses 100% of Server 1 and 14.6% of Server
5; App3 uses 100% of Server 2 and 70.3% of Server 5. These
values were obtained from the optimized configuration so-

lution at the highest peak for the combined workloads. We
used a simple round-robin method for application workload
balancing.
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Figure 7: Cluster power consumption

The energy consumption was calculated by means of an
approximation given by the sum of utilization of the ac-
tive servers multiplied by the related busy and active-idle
power consumption, accumulated along the simulation dura-
tion time. That is, assuming the notation introduced in Sec-
tion 2.2, the cluster energy consumption can be expressed as
E =

P
t

P
i,j α

t
ij · pbij + (1− αt

ij) · piij such as i is an active
server and j is its operating frequency with the respective
utilization at time t, imposed by the associated workloads,
and t ∈ {1, · · · , T} is expressed in seconds, where T is the
duration of the simulation. Thus, E is measured in Joule
(or watt x second).
By using our approach, the energy consumption in the

cluster is substantially reduced. In the performance simu-
lation execution, a total energy consumed was 847,778.82J
= 235.49Wh, whereas in the ondemand execution, the en-
ergy consumed was 735,630.05J = 204.34Wh. In the execu-
tion using our approach the energy usage was 452,050.15J =
125.57Wh. This means an energy consumption reduction of
about 47% compared to performance policy and 38% com-
pared to ondemand. The main argument for this greater
energy savings is the fact that active-idle power consump-
tion of current server machines (as shown in Figure 3) is
substantially high. This in turn makes server on/off mecha-
nisms (used by our optimization) very power-efficient.

4.1.3 Scalability considerations
To evaluate the scalability of our approach, we generated

different pairs of server-application setup. For each pair,
we ran the CPLEX to build and solve 180 instances. This
means that each instance uses as its application demand
vector the workload data at each time interval of 10 seconds
using the traces shown in Figure 5.
The CPLEX solver was executed for every instance with

a user-defined solution time limit of 180 seconds, which is
related to the maximum allowed control period used in our
dynamic optimization policy for managing the cluster en-
vironment. Table 1 shows the results of simulations with
different number of servers and applications. From 5 to 30
servers, the optimal configuration solutions were found in
all 180 runs within the solution time limit. From 50 to 100
servers, there is at least one instance where CPLEX could
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Figure 6: Dynamic optimization execution

not find the optimal solution for all instances within 180
seconds.

Server-App Avg. (s) Stdev. (s) Max. (s)
(5,3) 0.022 0.018 0.070
(10,6) 0.054 0.035 0.250
(15,9) 0.062 0.038 0.240
(30,18) 0.392 0.913 8.610
(50,30) 13.630 29.959 180.010
(80,48) 58.941 53.570 180.020
(100,60) 80.135 52.394 180.030

Table 1: Scalability simulation

In order to speed up the process of obtaining a high qual-
ity solution, we adopted a simple heuristic by setting a gap
tolerance of 5% with respect to the optimal solution. This
is a user-defined value and intends to allow the solver to
provide acceptable solutions in a short amount of time. Ta-
ble 2 summarizes the simulation results when the minimum
gap tolerance criteria was adopted. From 5 to 350 servers,
the configuration solutions were found in all 180 runs within
the gap tolerance (5%) and the solution time limit (180 sec-
onds), with a maximum processing time about 75 seconds.
For 500 servers, there were three instances where CPLEX
could not find the solution within the time limit.
This strategy considers the solution gap between the best

integer feasible solution found so far and the lower bound
(LB) provided by the solver, which is usually calculated by
solving a pure linear version the original problem. In mini-
mization problems, the LB can be seen as a reference value
which ensures that the optimal solution is greater or equal
than this quantity. Considering the small gap value used,
the CPLEX was capable of finding highly acceptable solu-
tions, i.e., close to the optimal lower bound.
Even though we generate a number of scenarios involving

different pairs of server-application setup, it is not possible
to assume that the CPLEX will have a similar behavior in
all instances. The main difficulty is that the branch-and-
cut method has a worst-case exponential time complexity

Server-App Avg. (s) Stdev. (s) Max. (s)
(5,3) 0.006 0.008 0.040
(10,6) 0.023 0.022 0.100
(15,9) 0.031 0.030 0.130
(30,18) 0.062 0.067 0.540
(50,30) 0.139 0.281 2.390
(80,48) 0.267 0.235 3.000
(100,60) 0.481 0.409 3.080
(200,120) 2.893 1.993 11.550
(350,210) 16.488 12.979 75.440
(500,300) 48.409 41.472 181.030

Table 2: Scalability simulation using the optimality
gap criteria

and depending on the combination of application workloads,
this approach may lead to poor solutions in an acceptable
runtime execution (solution time limit). Nevertheless, based
on the simulations presented here, we have observed that the
CPLEX performs well on the average case.
Given a typical optimization control period of few min-

utes, such as used in [16], the proposed optimization ap-
proach is suitable and scales well for clusters with up to 350
machines. This seems to be a reasonable size for a server
cluster set, because, for instance, servers can be divided in
smaller clusters or racks in a hierarchical fashion to address
scalability issues.

4.1.4 Switching cost effects
We describe two execution scenarios to analyze the switch-

ing cost effects in our optimization approach. To account for
the switching cost, we define the penalty ON_P = 50W in
terms of the power consumed for turning machines on, as
proposed in Section 2.2.2. That is, we assume that a system
switching on consume 50W more than when active-idle. We
have specified a sufficiently high penalty to avoid switching
overhead, but more accurate values for these penalties have
to be investigated in further study. Table 3 shows a compar-
ison between the two scenarios. Scenario A does not account
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for switching costs, whereas scenario B does.

Time Demand Config. A Config. B
1 [32, 100, 15] [(5, 2, 1), (5, 2, 2), (5, 2, 3)] [(5, 2, 1), (5, 2, 2), (5, 2, 3)]
2 [32, 120, 15] [(1, 2, 1), (1, 2, 2), (1, 2, 3)] [(5, 3, 1), (5, 3, 2), (5, 3, 3)]
3 [32, 140, 15] [(5, 4, 1), (5, 4, 2), (5, 4, 3)] [(5, 4, 1), (5, 4, 2), (5, 4, 3)]

Table 3: Switching cost scenarios

Recall that a configuration solution is defined as a vector
of tuples (i, j, k), where i is a server at frequency j and k
is an application allocated to that server. At time 1, the
configuration solutions are identical for the two scenarios,
which means that all applications are hosted by server 5
at frequency 2. However, at time 2, the new configuration
for the scenario A requires that server 1 be turned on (at
frequency 2) and server 5 be turned off, which involve over-
head costs. On the other hand, including switching costs as
in scenario B requires that server 5 (which is already turned
on) increase its frequency to 3, which adds essentially no dis-
ruption to the system. At time 3, both the scenarios require
that the server 5 increase its frequency to 4, transitioning to
the same configuration. Note that similar disruptive on/off
actions were employed by scenario A, whereas scenario B
has only relied on manipulation of frequencies. To simplify
the calculation, we assumed that a server can be turned on
in one time step.
We also evaluated the effectiveness of the switching cost

modeling in terms of the number of switching activities re-
duction as compared to the optimization model that does
not account for switching costs (used as baseline). Our sim-
ulation execution (using the workload description from Sec-
tion 4.1) indicated that the adoption of a switching cost
model required 90 activities of turnning servers on/off and
156 activities when employing the baseline model. This
means a switching reduction of 42%. Moreover, in a real
scenario, application services in the cluster may retain im-
portant persistent states, such as web sessions, which leads
to additional cost in switching from one server to another.
Also, some overhead related to hardware reliability can be
accounted for. We believe these issues provide useful direc-
tions of future investigation.

5. RELATED WORK
There are differences between our optimization solution

and the major works that precede it. Several optimiza-
tion approaches, based on the bin packing problem, for con-
figuring virtualized servers are described in the literature,
such as [4, 13]. However, their models are not designed
for power-aware optimization. In [28], the authors present
a two-layer control architecture aimed at providing power-
efficient real-time guarantees for virtualized computing envi-
ronments. The work relies on a control theory based frame-
work, but does not addresses live migration and on/off mech-
anisms in a multiple server context. A heuristic-based solu-
tion for the power-aware consolidation problem of virtual-
ized clusters is presented in [23], but it does not guarantee to
find solutions that are at least near to the optimal. In [16], a
dynamic resource provisioning framework is developed based
on lookahead control. A power-aware migration framework
for virtualized HPC (High-performance computing) appli-
cations, which accounts for migration costs during virtual
machine reconfigurations, is presented in [26, 27]. Similarly

to our approach, it relies on virtualization techniques used
for dynamic consolidation, although the application domains
are different.
Contrasting with [23, 16, 27], our approach takes advan-

tage of dynamic voltage/frequency scaling (DVFS) mecha-
nisms to optimize the server’s operating frequencies in or-
der to reduce the overall energy consumption. An approach
based on DVFS is presented in [9] for power optimization
and end-to-end delay control in multi-tier web servers. Re-
cent approaches, such as presented in [20, 2, 14, 15, 12,
21] also rely on DVFS techniques and include server on/off
mechanisms for power optimization. However, these ap-
proaches are not designed (and not applicable) for virtual-
ized server clusters. That is, they do not consider multiple
application workloads in a shared cluster infrastructure.

6. CONCLUSION
In this paper, we presented an approach for power op-

timization in virtualized server clusters, including an opti-
mization MIP model and dynamic configuration strategy. In
the optimization model, we addressed application workload
balancing and the often ignored switching penalty aimed to
avoid frequent and undesirable turning servers on/off. Our
simulations show that our strategy can achieve power sav-
ings of 47% compared to an uncontrolled system (used as
baseline).
By using a simple but effective optimality gap criteria in

the optimization solver, our approach scales well for clus-
ters with up to 350 servers. Currently, we are working to
integrate our MIP model with heuristic approaches to pro-
vide suboptimal but very high-quality solutions in a short
period of time. However, in very large data centers, with
thousands of machines, smaller sets (hundreds) of machines
of can be allocated (dynamically) to support dedicated clus-
ters for specific applications, which could be managed au-
tonomously (as pointed out by [5]). Thus, we believe that
our optimization approach can be successfully applied in this
context.
As for future work, we aim to evaluate our approach in a

real virtualized computing environment using Apache web
servers [24] and virtual machine technology, such as the Xen
hypervisor [1]. We also intend to incorporate in our exper-
iment two features: (a) a measure to account for the over-
head incurred during live migration of virtual machines, and
(b) prediction techniques to improve the quality of dynamic
optimization decisions, such as those described in [16, 11].
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