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Abstract—In the traditional approach to circuit design the
supply voltages for each transistor/gate are set sufficiently high
so that with sufficiently high probability no transistor fails.
One potential method to attain more energy-efficient circuits is
Near-Threshold Computing, which simply means that the supply
voltages are designed to be closer to the threshold voltage.
However, this energy saving comes at a cost of a greater
probability of functional failure, which necessitates that the
circuits must be more fault tolerant, and thus contain more gates.
Thus achieving energy savings with Near-Threshold computing
involves properly balancing the energy used per gate with the
number of gates used. We show that if there is a better (in terms
of worst-case relative error with respect to energy) method than
the traditional approach then P = NP, and thus there is a
complexity theoretic obstacle to achieving energy savings with
Near-Threshold computing.

I. INTRODUCTION

The threshold voltage of a transistor is the minimum supply
voltage at which the transistor starts to conduct current.
However, if the designed supply voltage was exactly the
ideal threshold voltage, some transistors would likely fail to
operate as designed due to manufacturing and environmental
variations. In the traditional approach to circuit design the
supply voltages for each transistor/gate are set sufficiently
high so that with sufficiently high probability no transistor
fails, and thus the designed circuits need not be fault-tolerant.
One potential method to attain more energy-efficient circuits
is Near-Threshold Computing, which simply means that the
supply voltages are designed to be closer to the threshold
voltage. As the power used by a transistor/gate is roughly
proportional to the square of the supply voltage [3], Near-
Threshold Computing can potentially significantly decrease
the energy used per gate. However, this energy saving comes
at a cost of a greater probability of functional failure, which
necessitates that the circuits must be more fault tolerant, and
thus contain more gates. As an example from [7], the circuit
shown in Figure 1 is the traditional 6-transistor design for an
SRAM cell, while the circuit shown in Figure 2 is a more fault-
tolerant, and thus more suited for Near Threshold Computing,
10-transistor design for an SRAM cell.

To understand the relationship between the suppply voltage,
energy/power, and error probability, consider the semi-log plot
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Fig. 1: Standard 6-transistor SRAM cell design.
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Fig. 2: A more fault-tolerant 10-transistor SRAM cell design
from [4].

of voltage-to-failure for an SRAM cell from [7] in Figure
3. Since the relationship between voltage and the log of the
failure is approximately linear, we conclude that the error as
a function of supply voltage v is approximately of the form
of e(v) = ¢, for some positive constant c. Using the fact
that the energy is proportional to the square of the supply
voltage [3], we conclude that the failure-to-energy function
for a 65nm SRAM cell is approximately f(e) = O (log(1/€)).
To be a bit more general, we will assume in this paper that
f(e) = ©(log®(1/¢)) for some constant « > 1. In particular
note that the error and energy are inversely related.

As the total energy used by a circuit is approximately the
energy used per gate times the number of gates, achieving en-
ergy savings with Near-Threshold computing involves properly
balancing the energy used per gate with the number of gates
used. The optimization problem that a circuit designer most
naturally would like to solve is:
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Fig. 3: Semi-log plot of voltage-to-failure for an SRAM cell
from [7].

Definition 1. Minimum Energy Circuit Problem: Given a
function F, and an error bound 6, output a circuit C and
a setting v of the supply voltage, such that C' uses minimal
energy, subject to the constraint that C' computes F with
probability at least 1 — .

But the ability to even approximately bound optimal circuit
sizes is essentially at least as hard as the P vs. NP question,'
and is untouchable with current mathematical knowledge.
Thus in this paper we consider the following more limited
optimization problem:

Definition 2. Minimum Circuit Energy Problem (MCE):
Given a circuit C, and an error bound 0, output a setting v of
the supply voltage, such that C' uses minimal energy, subject
to the constraint that C' computes correctly (what C would
compute if there were no errors) with probability at least 1—6.

We show, in Section V, that this problem is NP-hard, even
in the special case that the input to the circuit is fixed. Thus
if P#NP then there is no efficient method for computing the
optimal supply voltage setting. The standard fallback approach
for NP-hard optimization problems is to seek algorithms
that are guaranteed to produce solutions with optimal/good
relative error compared to the optimal solution. In our case, an
algorithm A has approximation ratio ¢ (or equivalently worst-
case relative error c—1) if for all inputs, the energy used by the
circuit with the supply voltage setting given by A is at most
c times the optimal minimum energy. We show in Section III
that the approximation ratio of the traditional algorithm, which
sets the supply voltages such that the probability of error of
each of the n gates is §/n, is O(log™ n). In contrast, we show
in Section IV that it is NP-hard to approximate the energy
within a factor of O(log®™ " n) for any v > 0. Putting these
two results together, we see that there is a complexity theoretic
obstacle to achieving more energy efficient circuits by using

UIf one could prove that your favorite NP-complete problem required super-
polynomially many gates to compute, this would prove P#NP.

lower supply voltages than one obtains by the traditional high
supply voltage approach. More precisely, if one could find a
computationally efficient algorithm for setting supply voltages
that has better worst-case relative error than the traditional
approach, then P = NP. So, assuming P # NP, any
proposed algorithm would either not have worst-case relative
error better than the traditional approach, or would take super-
polynomial time on some circuits. But of course the standard
caveat applies here: as NP-hardness is a worst-case concept,
this doesn’t mean that one can not beat the energy used by
the traditional approach for particular circuits of interest.

A natural question is whether one can restrict the type of
circuits to some class that both contains the type of circuits
that one cares about in practice, and for which (maybe nearly)
energy optimal supply voltages can be efficiently computed.
As a small step in this direction, we show in Section VI that
there is an efficient algorithm to verify whether a particular
setting of the supply voltage achieves the desired error bound if
the circuit is a tree. This hints at the hardness of the Minimum
Circuit Energy Problem coming from “cycles” in the circuit.
Finally, in Section VII we make the curious observation that
there are circuits where the reliability of the output is not
monotone in the reliability of the gates. Understanding this
non-monotonicity seems to be the key to being able to solve
the Minimum Energy Circuit problem for circuits that are
trees.

We next briefly discuss related theoretical work, and then
in Section II we introduce the formal models and defini-
tions neccessary to make the above discussion mathematically
rigorous. It is important to note that our conclusion, that
there is a complexity theoretic obstacles to achieving energy
savings with Near-Threshold computing, does not seem to be
particularly sensitive to our modeling choices. In particular,
these results hold for several natural ways to model faults,
and for all failure-to-energy functions that are roughly of the
same form as those observed in current technologies.

A. Related Work

The paper [7] gives an excellent survey on Near-Threshold
Computing.

Some of our formal models are inherited from [1]. The
four main results in [1] are: (1) To compute a function with
sensitivity s requires a circuit that uses energy Q(slog s), (2) If
a function can be computed by a circuit with n reliable gates,
then it can be computed by a circuit with energy O(nlogn),
(3) there are circuits where there is a feasible heterogeneous
setting of the supply voltages which uses much less energy
than any feasible homogeneous setting of the supply voltages,
and (4) there are functions where there are nearly optimal
energy circuits that have a homogeneous setting of the supply
voltages.

The study of fault-tolerant circuits started with the seminal
paper by von Neumann [16]. Several subsequent papers [5],
[6], [13], [14], [15], [9], [8], [11] have considered the question
of how many faulty gates, each (independently) having a
(small) fixed probability of failure, are required to mimic the



computation of an ideal circuit with some desired probability
of correctness.

II. MODELS AND DEFINITIONS
A. Models

In this subsection we formally define the models that we
will use throughout the paper. The difference in the two models
described is how we model functional failures in a circuit. We
first formally define Boolean functions and circuits.

A Boolean function h is a function from {0, 1}™ to {0, 1}.
A gate is a function g : {0,1}" — {0,1}, where ng is the
number of inputs (i.e., the fan-in) of the gate. We assume that
the maximum fan-in of the circuit, maxgsec ng, is at most
a constant. A Boolean circuit C' with n inputs is a directed
acyclic graph in which every node is a gate. A wire is an edge
of this graph. Every circuit has n gates with fan-in zero, each
of which outputs one of the n inputs of the circuit. One gate is
designated as the output gate, which has out-degree zero. Any
Boolean function can be represented by a Boolean circuit, and
every Boolean circuit computes a unique Boolean function. For
any I € {0,1}", we denote by C(I) the output of the Boolean
function computed by circuit C'. The circuit is supplied with a
voltage v. A voltage-to-failure function e(v) : R* — (0,1/2)
maps a supply voltage to a probability of functional failure.
We study two models of functional failures in circuits.

von Neumann Failure Model: In the von Neumann failure
model, each non-input gate g fails independently with some
probability €(v). When a gate fails on input x € {0,1}", the
output of the gate is the complement of g(x), and otherwise
it is g(x). Equivalently, if g recieves input = then with proba-
bility 1 — e the output of g is g(x), and with probability e the
output of g is the complement of g(z), and these probabilities
are independent of any other gate failures in the circuit.
There is a voltage-to-energy function F(v) mapping the supply
voltage to the energy used by a gate with that supply voltage.
The energy required by a circuit C' is simply the aggregate
energy used by the gates, > - E(v). For convenience, we
define a failure-to-energy function f(q) := E(e~'(q)), where
¢! denotes the inverse of the function e. Thus the energy of
a circuit C' can be rewritten as »_ . f(€(v)).

0-default Failure Model: In the O-default failure model,
each input wire to a gate g is associated with a probability of
failure ¢, and when a wire fails it sends the default value of 0
(e.g., the wire by default carries a low voltage). More formally,
for a given input I = (by,...,by,,) € {0,1}"s, the i'" input
wire carries bit b;. If b; = 0 then with probability 1 g receives
0 as the i input bit. If b; = 1, then with probability ¢ the wire
fails and g receives 0 as the i‘" input bit, and with probability
1 — € g receives 1 as the i*" input bit. (note that a failure can
only change a wire from carrying a 1 to carrying a 0). There is
a voltage-to-energy function £ (v) mapping the supply voltage
to the energy used by a wire with that supply voltage. The
energy required by a circuit C' is simply the aggregate energy
used by the wires, >~ E(v). For convenience, we define
a failure-to-energy function f(q) := E(e '(q)), where ¢!

denotes the inverse of the function e. Thus the energy of a
circuit C' can be rewritten as ) f(e(v)).

Since the two quantities we are most interested in are failure
probability and energy, and the failure-to-energy function de-
scribes a direct relationship between the two, from henceforth
we drop all reference to the supply voltage (e.g., we denote
€(v) by €.

B. Definitions

We now formally define what it means for a circuit to
reliably compute a function. Note that this definition could
apply to either failure model described above.

Definition 3. Given a circuit C, a probability of failure € €
(0,1/2), a value 6 € (0,1), and an input I, C is said to be
(¢, 0)-reliable on input I if the probability that it computes the
correct output C'(I) for input I, when each of its gates fails
with probability ¢, is at least 1 — 6. A circuit C is said to be
(e, 0)-reliable if it is (e, d)-reliable on every input I.

Since gate error and voltage are inversely related, we can
restate the Minimum Circuit Energy problem in terms of
reliablity as follows.

Definition 4. Minimum Circuit Energy Problem (MCE): Given
a circuit C and § € (0,1), output the maximum € such that C
is (e, 0)-reliable.

We will also consider bi-criteria approximations on energy
and circuit failure.

Definition 5. For any circuit C and § € (0,1), let ez, ; be the
solution to MCE(C,6). An algorithm is a (c, d)-approximation
for MCE if on any input (C,0) it outputs a value € such that
C is (¢,d6)-reliable and f(e) < c- f(eg 5)-

Note that a (¢, 1)-approximation for MCE means that the
approximation is only on energy, i.e., the algorithm outputs an
e such that the circuit is (e-9)-reliable and the circuit uses at
most c times the energy of the circuit with the optimal choice
of e.

ITI. POLYNOMIAL-TIME APPROXIMATION OF THE
MINIMUM CIRCUIT ENERGY PROBLEM

In this section we show in Theorem 6 that the approximation
ratio of the traditional algorithm, which sets ¢ = §/n, is
O(log® n). We can actually prove a slightly more general bi-
criteria approximation bound, in Theorem 7, that shows the
trade-off on approximation between energy and reliability for
a generalization of the traditional approach. For the 0-default
failure model, we require that the circuit is non-trivial in the
sense that there is at least one input that causes the output to
be 0, and at least one input that causes the output to be 1.

Theorem 6. In both the von Neumann and O-default fail-
ure models, the traditional approach is an (O(log® n),1)-
approximation for the MCE problem on non-trivial circuits.

Theorem 7. Let w denote the total number of wires of
the circuit C, that is, w = dec ng, and let ¢ denote



the fan-in of the output gate of the circuit. In the 0-default
failure model, setting ¢ = 0/(Bw), for any § > 1, yields
a ((2¢2/1og 2)*1log®(Bw), 3/(28))-approximate solution for
the MCE problem on non-trivial circuits. In the von Neumann
failure model, setting ¢ = §/(Bn), for any B > 1, yields
a ((2/1og2)*log™(Bn), 3/(28))-approximate solution for the
MCE problem.

Proof. We first prove Theorem 7 for the O-default failure
model. First, we will choose the greatest value of e for which
we can prove that the desired bound on the error of the circuit
(that is, 3/(20)) is satisfied. Since the probability that no wire
in the circuit C' fails is (1 — €)™, it is sufficient to set € such
that
3
w
(I-e¥2>1 % 0,

that is

g (1-9)

log(l —¢€) > p (D

From standard calculus we know that
3
log(1—z) > 5% for 0 < x < 0.5828

and

log(l—2) < —z forx <1 and x # 0,

and thus Inequality 1 is satisfied by setting e = §/Sw, since

30 log (1 — %5)

5
log(l—e):log<1—ﬁw>> 5 G "

Then, we have to show that with this choice of ¢ the
energy E used by the circuit is at most a factor of
(202 /1og 2)* log®(Bw) of the energy E* used in an optimal
solution. As for the preceding theorem, to do this we determine
an upper bound to the optimal solution €*, that is the maximum
value of e for which the circuit is (e, 0)-reliable, from which
it follows a lower bound for the energy used in an optimal
solution. We have two cases, depending on whether the last
gate g, of the circuit outputs 0 or 1 on input (0,0,...,0).
Consider first the case, that is, ¢,(0,0,...,0) = 0. The other
case is symmetric. Since by hypothesis the circuit is non-
trivial, then the circuit does not represent the constant function
f’ = 0. Hence, there must be at least one input I to the circuit
C for which C(I) = 1. Let ¢ denote the probability that all
the ¢ wires entering the output gate g, receive value 0 when
the input to the circuit is I. If we denote with p the probability
that the circuit outputs the correct bit when each of its wires

fails with probability e, then it holds that

1 — p = Prlcircuit C outputs the wrong bit]
> Prcircuit C outputs the wrong bit on input []
= Pr]circuit C outputs 0 on input I]
=q-14+(1—-q)

- Pr|g, receives an input z s.t. g,(z) = 0]

> g+ (1—gq) - Prg, receives input z = (0,0, ...,0)]
> g+ (1 — q) PrJall the ¢ input wires of gate g, fail]
=q+(1—q)e”

> €%,

and therefore,
p<1-—¢€¥.

In an optimal solution it must be that
p Z 1- 6a

and thus, combining the two previous inequalities, it must hold
that
1-6<1— ("%,

that is
(e") < 6Y/¢.

This implies a lower bound of n1log®(1/5'/#) for the optimal
energy consumption E*.

For the same reason, the energy consumption E of our
approximate solution is nlog®(fw/d). Since § < 1/2, 8 > 1,
we have,

E = nlog® <B;U)

=n <log(6w) + log ;)
<n2et <logo‘ (Bw) + log™ ;)

1
_ a—1 (e «@ ot
=n2 <log (Bw) + ¢ log 61/9">
@™ log® =

log™ 21/¢

™ log® =
log® 21/%

IN

n2%~! <1oga (Bw)

+ log® (Bw)

20°\%. o o 1
_n<log2> log® (Bw) log 5i7e

2<p2 @
< log® - E*
< (log2> og”(Bw) - £,

where the first inequality follows from Jensen’s inequality.
The proof for the von Neumann failure model is similar. [

We can then prove Theorem 6, showing that the traditional
approach is a (O(log™ n), 1)-approximation, by using the same
analysis with 8 = 3/2,



IV. HARDNESS OF APPROXIMATION FOR THE MINIMUM
CIRCUIT ENERGY PROBLEM

In this section we prove that it is NP-hard to obtain a
better approximation than the O(log™n) obtained from the
traditional approach.

Theorem 8. In both the von Neumann and O-default failure
models, it is NP-hard to (log®~ " n, 1)-approximate the MCE
problem for any v > 0.

Proof. The main idea of the proof is to show that for a
satisfiable circuit and an unsatisfiable circuit there is a large
gap between the probability they correctly compute their input.
In particular, in the case of a satisfiable input, we show that
it is very unlikely for the output of the circuit to be a 1. For
technical reasons we restrict v to v € (0, ). It is clear that
the problem is only computationaly harder as - increases. The
proof makes use of some technical facts stated after this proof.
Assume by contradiction that there exists a (log® 7 n, 1)-
approximate algorithm A. For notational convenience, let ¢ =
log®™ " n. Furthermore, let ¢ be an arbitrary 3SAT formula
with m clauses and n variables. Let S, be the natural circuit
for ¢ that uses at most 3m NOT gates to represent the negated
variables, m OR gates of fan-in 3 to represent the clauses,
and a tree of m — 1 AND gates of fan-in 2 that computse the
conjunction of all clauses. See Figure 4 for an example.

L6

By

T4

€3

T2

By

x

Fig. 4: The circuit Sy where ¢ = (x1 VT2 Vxa) A(z1 VX2V
1'3) A (i’g \ Tg \Y 1’5) AN ((Eg vV i’5 \Y fg).

We choose € such that

o mAl
(1—eﬁ) T+ 4% <1 —8e )

and let § = 8¢. We will show later that such an e must exist.
Now, consider the output of A, €4 on Sy with input 6. We
claim that ¢ is satisfiable if and only if f(ea) > clog®(1).
In the first case, assume ¢ is satisfiable. Consider S4 where
each gate fails independently with probability €4 (or wire in
the 0-default model), and the input = such that ¢(z) = 1. Let

Ey be the event that each of the OR gates receives at least 1
positive input, F/; be the event that all of the OR gates output
a 1 and E5 be the event that S4 outputs a 1. By Lemma 11,
we know that

Pr[Es] < (1—ea)™ + dea.
Further by (2), if €4 = € V¢ then we have
PriBy) < (1—eVe)m+l 1 4e¥e <1 -8e=1-6. (3)

Note that for €4 € [e V¢,1/2), the quantity (1 —e4)™ ! +
4e4 is maximized at e4 = e V°. Therefore, we must have
ea < €Ve otherwise by (3), the probability that Se is
correct would not be within 1 — J, contradicting that A is a
(log®~7(n), 1)—approximation. Further since f is decreasing,
flea) > f(eV®) = clog™(%).

Now, assume that ¢ is unsatisfiable. Consider S, with an
arbitrary input = where each gate fails independently with
probability €4 (or wire in the 0-default model). Note since
¢ is unsatisfiable, ¢(x) = 0. Let the events Ey, F; and Es
be defined in the same way as before. Using the bounds on
Pr[FE>|E] and Pr[E>|-F;] from the proof of Lemma 11 we
have,

Pr[Es] = Pr[Ez|E1] Pr[F4] + Pr[Es|—Eq] Pr[—Ey]
= (1 —€4) Pr[Ey] + (4de4) Pr[—Eq]
= (1 — €4)(Pr[E1|Eo] Pr[Ey]
+ Pr[E1|-E) Pr[—Ey]) + (4e4) Pr[—F]
<(I—ea)((1—ea)™(Bea) + (1 =€) H(ea) - 1)
+ (4e4) Pr[—F4]
< 8ey.

Therefore for all inputs, the probability that S, is correct
is at least 1 — 8ec4. So note that if ¢4 = ¢, the probability
S¢ is correct is at least 1 — §. This shows that €* > e.
By the definition of A being (c,1) approximate this means
that f(ea) < cf(e) = clog®(2). This shows that we can
determine the satisfiability of ¢ using A. If f(e4) > clog® (1),
¢ is satisfiable, and otherwise if f(e4) < clog®(), ¢ is not
satisfiable. The last thing to do is show the existence of an €

1
satisfying (2). Consider ¢ = ( L ) V* . Then,

m—+1
a « Ve o 4
(1*€ﬁ)m+1+4e‘ﬁ§e*€ f(m+1)+46\/62671+7.
m+1
1
1 e _ 4
Also, 1— 8¢ = 1 -8 (1) . Note that e + 47 <

1
1\ Ve .
1-8 (m—ﬂ) since

1\ 1\t 2
lim 8 —— < lim 8- — 0.

O

We now state and prove some technical lemmas used in the
above proof.



Lemma 9. The recurrence p; = p? (1 —¢€) + (1 —p? )¢
po = 1 satisfies p; < p;_1 for all 1.

Proof. By taking the derivative of p; with respect to p;_1, we
see it is increasing in p;_; and therefore p; < p,_; implies
Pi+1 < p;. Since p; < pg, combining these facts gives that
Pi < Pi—1 for all 1. O

Lemma 10. Let € = (1/(m + 1))V V19877 (") and let p; =
p? (1 —€) + (1 —p?2 ,)e with py = 1. Then, for m bigger
than some constant My,

plog2 m S 3e.

Proof. We first show that piog,(1/e) < 1/ V2. Note that for
Pie1 2 1/V2, pi = pi_(1-26) +e=p]_; —e(2p}_; —1) <
p?_,. Therefore, since p; = (1 — €) it follows that for p; >
1/v2, p; < (1 —€)?'. Note for i = log,(1/€) we have p; <
(1 —€)'/¢ — 1/e as € — 0. It follows that for some constant
My and m > Mo, piog,(1/¢) < 1/+/2. Further it is easy to
see that piog, (1/¢)+3 < 1/8 by expanding the recurrence and
letting € — 0.

The last thing to show is that in log, log,(1/€) additional
steps we can go from 1/8 to 3e. Let k = log,(1/€) + 3. Then,
this follows by noting that pyy; < pij + 2¢ for any 57 > 0. To
see this note that it clearly holds for j = 0, and by induction
if this holds for an arbitrary j > 0, then

. -
Phtjt1 = piﬂ-(l —2¢)+ €< (p%] + 26)2 +e< p%] + 3e.
By solving p?’ = € we obtain that Piog, (1/6)+3+1og, log, (1/¢) <

3e. Lastly, note that

log,(1/€) + log, log,(1/€) + 3 < 3logy(1/€)

=3
Vieg® "'n
3 3log, n
‘{“/loga 72 o “p
= ) log"/%n
V1og® 72
9 v/a
< log?’"“m
V1og® 72

and SO piog,m < 3¢ since by Lemma 9 piog,m <

p9 log™/*(m)/ §/log>~7 2" O
Lemma 11. Let ¢ be some satisfiable 3SAT formula with n
variables and x be the input such that ¢(x) = 1. Then, in
both the von Neumann model and the 0-default model, the
probability that Sy outputs a 1 is bounded above by (1 —

€)™t + de, where e = (1/(m + 1))1/ Vg7 (n)

Proof. We first show this holds in the von Neumann failure
model. Let g, be the output gate of C (the root of the tree of
AND gates). Further, let Ej be the event that each of the OR
gates receives at least 1 positive input, F/; be the event that all

of the OR gates output a 1 and Fs be the event that g, outputs
a 1. We first calculate Pr[Fs|E;]. This is the probability that
the tree of n — 1 AND gates outputs a 1 when all the inputs
to the leaves are 1. Let p; be the probability that a gate on the
it" level outputs a 1. We define the input to the leaves to be
at level 0. Note that py = 1, and for ¢ > 0, we can write p;
as a recurrence in the form,

pi=pi(1—€) + (1 —pj)e

Further, since p; = (1 —¢), and by Lemma 9, the sequence
p; is decreasing as ¢ — oo we have that Pr[Es|E] < (1—e).
Next, we bound Pr[Es|—F1]. Let A denote the event that g,
receives two 1’s as input. We have,

Pr[Es|~E1] = Pr[Ey|~Ey A Al Pr[A|-E]
+ PI‘[E2|_|E1 A _|A] PI‘["A‘_\El]
< (1—¢€)Pr[A|=E1] +e.

The last thing to do is bound Pr[A|-E;]. Informally, we
first argue that the probability of getting a 1 to the root of
the tree is only increased if £ occurs, that is all leaves have
value 1. After that, we can use the recurrence to show that for
sufficiently large trees this probability is O(¢). More formally,
for some fixed gate ¢’, let p;, be the probability the left input
is 1 and pr be the probability the right input is 1. Then, if
pgy denotes the probability ¢’ outputs a 1, we have

Py = (pLpr)(1 —€) + (1 — pLPR)E.

Taking the partial derivative with respect to pz, or pr shows
that p,s will increase as py, or pg increase. This implies that
Pr[A|-E;] < Pr[A|E4], since for every leaf, the probability
of having a 1 will not decrease, and therefore by induction
on the levels of the tree, every gate will have an increased
probability of outputting a 1. Let A be the height of the
tree. Then, note that Pr[A|E;] = p? < pj as defined by
the recurrence in Lemma 9. However, since h = log, m by
Lemma 10 piog, m < 3¢ and therefefore Pr[A|-FE;] < 3¢ and
futher, Pr[FEs|—FE;] < 4e. We are now ready to calculate the
probability that S, () outputs a 1. We have,

Pr[E,| = Pr[Es|Eq] Pr[E;] + Pr[Es|~E1] Pr[-E4]
= (1 —¢€) Pr[E1] + 4e Pr[—E}]
(1 — €)(Pr[E1|Ey] Pr[Ey]
+ Pr[Ey|-Ey) Pr[-Ey]) 4+ 4e Pr[—F4]
(I—e) (=)™ 1+ (1—e™ "(e) 1) +4e
(1—€)™ 4+ 4e.

<
<

To see that this holds in the O-default model, note that
Pr[E2|-FE4] = 0 < 4e since a 0 wire will never flip to a 1.
Using this we can make an identical calculation to the above
to get that Pr[E] < (1 — €)™t + 4e. O



We end by noting that a slight modification of the proof of
Theorem 8 can be used to prove the following more general
theorem.

Theorem 12. It is NP-hard to (c,d)-approximate the MCE
problem in both the von Neumann and 0-default failulre models

. 1 e
for all ¢ > 1 and d such that lim,,,_, , 8d (Tﬂ) — 0.
V. HARDNESS OF DETERMINING (€, 0)-RELIABILITY ON
FIXED INPUTS

In this subsection we prove the following theorem.

Theorem 13. In the 0-default faulure model, given €, 6, C, and
I, it is NP-Hard to determine if C' is (e, d)-reliable on 1.

The section proceeds as follows. Our reduction is from the
gap-3SAT problem, which is known to be NP-Hard for certain
parameters, so we begin by formally defining this problem.
We then bound the probability that the natural 3SAT circuit,
S, outputs a 1 when given a random input both when ¢ is
satisfiable, and when at most 15/16 fraction of the clauses of
¢ are satisfiable. Finally, we introduce a circuit Ny, that, in the
presence of failures, can be used to randomize our input.

First we must introduce the gap-3SAT[«, 3] problem (with
a < (), as the NP-hardness reduction will be from this
problem. The problem is as follows: Given a 3SAT instance,
output “YES” if at least a 3 fraction of the clauses are
satisfiable, “NO” if at most an « fraction of the clauses are
satisfiable, and either “YES” or “NO” otherwise (i.e., such
inputs are not given). The hardness of this problem for certain
values of o and S follows from the PCP Theorem [2], and
in particular, Héastad proved the following theorem, giving the
best possible values for « and S.

Theorem 14 (Hastad [10]). Gap-3SAT[7/8+y¢, 1] is NP-Hard
for all € > 0.

The reduction is from the hardness of gap-3SAT[15/16,1].
We use as our main circuit the standard 3SAT circuit Sy
used elsewhere in this paper (see Figure 4 and the related
discussion). As we have seen, if the tree of AND gates does
not receive all 1’s, then with probability 1 the output is 0.
Thus, intuitively, if we could give S; a random input, then
(i) if ¢ is satisfiable, on the satisfying input S is much more
likely to output a 1 than on any other input, and (ii) if ¢ is
not satisfiable, then any assignment satisfies a fraction of at
most 15/16 of the clauses, so a large number (for example, at
least a n/16) of wires would have to fail for Sy to be likely
to output a 1. We first bound the probability that Sy outputs
a 1 when receiving an almost random input in the two cases
when there exists a satisfying assignment and when at most a
15/16 fraction of the clauses can be satisfied. We then show
that it is possible with a polynomially sized circuit to create
an almost random input from a fixed input, and use this to
complete the reduction.

Lemma 15. Let ¢ be a 3SAT formula and Sy be the circuit
for ¢, where each wire fails independently with probability e.

Suppose that each input to Sy is a 1 with probability at least
1/2 — ~ and at most 1/2 + . Then, in the 0-default failure
model:

1) If ¢ is satisfiable, then

Pr[S, outputs a 1] > (; - ”y) (1—e)™.

2) If at most a 15/16 fraction of the clauses of ¢ are
satisfiable, then

Pr([S, outputs a 1] < (3¢)™/16.

Proof. Let O be the random output of the circuit Sy and A be
the random event that the tree of AND gates of .S, receives
all 1’s as input. Then clearly O = 1 if A occurs and none
of the wires within the tree of AND gates fail, and O = 0
otherwise. Therefore,

Pr[O =1] = (1 —¢)*™ ' Pr[A].

1) ¢ is satisfiable. Let E be the event that Sy receives a
satisfying assignment as input. The probability E occurs
is at is at least (% — )™, since this is a lower bound
on Sy recieving any fixed input. Further, if none of the
wires in entering the OR gates fail (the wires entering
NOT gates in the clauses can only fail and output 1,
which only increases the probability thatO = 1), then A
occurs, SO

Pr[A|E A ¢ is satisfiable] > (1 — ¢)®™.

Clearly, the probability that A occurs if S4 does not
receive satisfying assignment as input is at least 0, so
the first statement of the lemma follows since

Pr[O = 1]¢ is satisfiable] >
(1 —€)*™ 1 Pr[A|¢ is satisfiable] >
(1 —€)*" ' Pr[E|¢ is satisfiable]-
Pr[A|E A ¢ is satisfiable] >

(; - 7) (1—em

2) At most a 15/16 fraction of the clauses of ¢ are
satisfiable. For this case, every assignment satisfies at
most a 15/16 fraction of the clauses. Thus we have that
an upper bound on A occuring is if at least one of the
wires associated with not gates in every clause that is
not satisfied fails (if a wire entering an OR gate fails the
gate will output 0), and all other gates do not fail. Thus
we have that

Pr[A|¢ is not satisfiable] < (3¢)™/19,
and therefore

Pr[O = 1|¢ is not satisfiable] < (3¢)™/16.



The following circuit will be useful in the reduction.

Definition 16. N is the circuit consisting of one input bit
connected to a single line of k NOT gates, i.e., the output of
the ith NOT gate is the input to the i + 1st NOT gate, for
iek—1]

If no gate in Ny fails, the output on input bit b is (b +
k) mod 2. However, if each of these gates fail independently
with probability e, then the output is random and, for k large
enough, will be b with probability very close to % Consider the
Markov chain M with two states that correspond to the output
bit after a certain number of NOT gates, and transitions with
probabilities based on whether or not the wire entering the
current NOT gate fails. If we label one state “1” and the other
“0”, then the output of Ny, is identical to the output of starting
M in state b and running for k steps. The transition from the
0 state to the 1 state happens with probability 1, since the
wire cannot fail in this case. On the other hand, the transition
from the 1 state to the O state only happens with probability
1 — €, and the chain stays in the 1 state with probability e. It
is easy to verify that this chain is irreducible, aperiodic, and
reversible. The transition matrix is

0 l—e]

M{l €

The eigenvalues of M are 1 and € — 1, and the stationary
distribution of M is =< in state 0, and 5'— in state 1, so the
number of steps k(p) until we are p away from the stationary
distribution is

1 2—c¢€
k(p) < -1 — .
=)
For a more in depth discussion of Markov chains and mixing

times, see, e.g., [12]. By setting p = 0.05, we obtain the
following observation.

Observation 17. Suppose each wire of Ny, fails independently
with probability € < 1/10. Then in the 0-default failure model
if k > log(44) /e, we have that 0.4 < Pr[Ny(b) = b] < 0.6.

We can now finish the reduction.

Proof of Theorem 13. The reduction is from  gap-
3SAT[15/16,1]. Let ¢ be a 3SAT formula that is either
satisfiable or at most a 15/16 fraction of the clauses can
be satisfied. Without loss of generality, we can assume the
assignments of all 1’s and all 0’s do not satisfy ¢, and that
there are at least n clauses in ¢. We set € = 1.4 x 1077
(a constant). Construct a circuit S(; that is Sy except
that each input first passes through a N circuit, where
k = T[log(44)/e], and thus S} is polynomial in size and
logarithmic in depth. We fix the input to this circuit to be
the input of all 1’s, so the correct output of S;) is 0. By
Observation 17, the output of each Ny circuit is 1 with
probability at least % — v and at most % + v for vy = 0.1. We
set 0 = (3¢)"/16. By Lemma 15 (since S7, is incorrect if it
outputs 1), if we show that

(3e)™/16 < (0.4)"(1 — €)®™ 4)

then it is NP-Hard to determine whether or not S; outputs
correctly with probability at least 1 — §. Rearranging the
exponents and noting that n < m, we obtain that

3e < (0.4)10(1 — €)%

implies that (4) holds. It is easy to verify that the choice of ¢
satisfies this inequality. O

In the von Neumann failure model, we were unable to prove
that determining if a circuit is (e, §)-reliable is NP-Hard. The
difficulty with following this same proof structure extends
from two conflicting constraints. The first constraint is that
the probability that S7, outputs a 1 when at most a 15/16
fraction of the clauses of ¢ are satisfiable must be smaller
than the probability S(’ﬁ outputs a 1 when ¢ is satisfiable. In
the O-defualt failure model, if the tree of AND gates in S:b
received anything but all 1’s as input, the circuit would output
0. In the von Neumann failure model this is not the case,
since any of the AND gates (e.g., the output gate) can fail and
incorrectly output a 1 instead of a 0. Thus in the von Neumann
failure model, the tree of AND gates has a higher probability
of outputting a 1 if 15/16 of its inputs are 1’s than if very
few of its inputs are 1’s, and this difference in probability
is polynomial in e. Since in the case when ¢ is satisfiable
we can only guarantee that the output of the N circuits is
the satisfying assignment with probability approximately 27",
we need to require € to be exponentially small in order to
guarantee that S(; has a higher probability of outputting a 1
when it is satisfiable than when at most a 15/16 fraction of
the clauses are satisfiable. The second constraint is that we
need k > 1/¢ in order for Ny to output a random bit. Thus if
€ is exponentially small, the circuit S(’ﬁ will be exponentially
large, and so the reduction will not be polynomial time.

VI. TREE CIRCUITS

There are classes of circuits for which the problems dis-
cussed in this paper are much easier, namely circuits whose
graph representation is a tree. The hardness results in this
paper stem from the fact that, in general, the undirected version
of the DAG representing a circuit C' may contain cycles. When
this is not the case, then the probability that a gate g outputs a
1 or a 0 is dependent only on the outcomes of the immediate
predecessors of g in C, and thus the situation is much simpler.
Given a circuit C' that is a tree and where each gate has
bounded fan-in, we describe below how to, in both the von
Neumann and 0-default failure models, answer the question of
whether C' is (e, §)-reliable in time polynomial in the size of
C (it can be seen that polynomial complexity can be achieved
also in slightly more general settings, e.g., when the circuit’s
structure is “close to” a tree).

The algorithm is as follows: Each gate g stores four prob-
abilities:

1) The highest probability that g is correct given that its

correct output is 1.



2) The lowest probability that g is correct given that its
correct output is 1.

3) The highest probability that g is correct given that its
correct output is 0.

4) The lowest probability that g is correct given that its
correct output is 0.

Let ¢ be the fan-in of g, and let g1, . . ., g, be the parents of
g. By choosing one of the stored probabilities from each of g’s
parents, we can in O(2%) steps calculate the probability that g
outputs a 1 in that case, and the correct output of ¢ in that case
can be computed from the correct outputs for the probabilities
chosen from g’s parents. Since there are 4¥ ways to choose one
stored probability from each of g’s parents, we calculate all of
these probabilities. Of those where the correct ouptut of g is a
1, we find and store the highest and lowest probabilities that g
does output a 1, and do the same for those where the correct
output of g is a 0. At the output gate, we find the minimum
of the lowest probability that g is correct given that its correct
output is 1, and the lowest probability that g is correct given
that its correct output is 0. This value determines the minimum
value for § given that functional failures occur with probability
e. It is straightforward to see how this algorithm could be
modified slightly to find the input to the circuit that minimizes
the probability of correctness when functional failures occur
with probability e.

To see why this alogrithm is correct, consider the situation
where all but the ith parent, g;, of some gate g output a 1 with
fixed probability. In this case, the probability that g outputs a
1 is linear in the probability that g; outputs a 1, and thus
this probability is monotonically increasing, monotonically
decreasing, or constant, as the probability that g; outputs a 1
increases. Further, since the circuit is a tree, changing the input
to the subtree rooted at g; does not affect the probability that
any of the other parents of g output a 1. Thus we can compute
the highest and lowest probabilities that g will output a 1 by
some combination of the highest and lowest probabilities that
its parents will output a 1. Since we do not know what the
correct output for g should be on the input that causes the
circuit to be incorrect with highest probability, we store these
probabilities in the cases when the correct output of g is either
1 or 0.

VII. NON-MONOTONICITY OF § IN €

For any circuit C, let 6*(¢) be the smallest value such that C
is (e, 0*(€))-reliable. A question that one might ask is whether
5*(e) is, in general, a non-decreasing function of e. In both
the von Neumann and 0-default failure models, this is not the
case. The circuit depicted in Figure 5 provides an example for
the von Neumann failure model. For this circuit, we obtain
different bounds on 6* (¢) depending on the input to the circuit.
The three cases are based on how many of the OR gates receive

a 1 as input.
5"(e) > Prly # (x1 Vaa) A(xsz Vag)|(x1 V) =1
and (1'3 V {E4) = 1]
=3e(1—e)?+e2(1—¢)

d"(e) > Prly # (x1 Va) A(xsz Vag)|(x1 V) =1
and (z3V x4) =0, or (z1 V) =0 and (z3 V 24) = 1]
=2(1—e)?+ (1 —¢) + 6

5%(e) > Prly # (x1 Vx2) A (23 V zg)|(x1 V23) =0
and (z3 V x4) = 0]
=e(1—€)? +36%(1 —¢).
Since §*(e€) is the maximum of the previous three bounds, it
is easy to see that for e < 1/2,
5% () = 3¢(1 — €)? + 2(1 —¢),

which is strictly decreasing on (a, 1), where a = (5—+/7)/6 ~
0.39. Intuitively, this happens because in such a circuit, when
€ increases, it is more likely that the errors occurring at the
two gates cancel out each other.

Z1
X2

-y = (x1Va)A (3 Vxy)

€3
T4

Fig. 5: A simple circuit where 6*(¢) is not monotone in € in
the von Neumann failure model, consisting of two OR gates
and one AND gate.

i; D—W y = (=(z1 A 22))

Fig. 6: A simple circuit where §*(¢) is not monotone in € in
the O-default failure model, consisting of an AND gate and
two NOT gates.

Figure 6 depicts an example where §*(e) is not monotone
in the O-default failure model. Here there are only two cases
to bound 6*(e), since if the inputs are not both 1, the output
of the AND gate is a 0 with probability 1.

0"(e) > Prly # x1 Aoz =1 and 25 = 1]
=(1-(1-)A - +e(l—¢)
=1l—-ec—(1—¢?*

0% (e) > Prly # x1 Axa|zy =0 or 25 = 0]

=€



Since 6*(¢) is the maximum of the previous two bounds, we
have that for ¢ < 0.45,

) =1—e—(1—e)*,

which is strictly decreasing on (b,1), where b=1—4"1/3 =
0.37.
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