Review

= Probability
= Random Variables
= Joint and Marginal Distributions
= Conditional Distribution
* Product Rule, Chain Rule, Bayes’ Rule
* |nference
Independence



Random Variables

= A random variable is some aspect of the world about
which we (may) have uncertainty
= R=Isitraining?
= D =How long will it take to drive to work?
* L =Wheream I?

= We denote random variables with capital letters

= Like variables in a CSP, random variables have domains
= Rin {true, false} (sometimes write as {+r, —r})
= Din [0, «)
» L in possible locations, maybe {(0,0), (0,1), ...}



Probabillity Distributions

= Unobserved random variables have distributions

P(T) P(W)
T P W P
warm | 0.5 sun 0.6
cold | 0.5 rain 0.1
fog 0.3
meteor 0.0

= A distribution is a TABLE of probabillities of values
= A probability (lower case value) is a single number

P(W = rain) = 0.1 P(rain) = 0.1

= Must have: Vz P(z) >0 Y P(z)=1
T



Joint Distributions

A joint distribution over a set of random variables: X1, X»,... Xy
specifies a real number for each assignment (or outcome):
P(X]_ =£E]_,X2:.’E2,...Xn=£l?n) P(T,W)
P(x1,xo,...2pn) T | w | P
hot [ sun | 0.4
= Must obey: hot | rain | 0.1
cold | sun | 0.2
P(x1,z0,...2n) > 0 cold | rain | 0.3
Z P(z1,29,...2n) =1
(1317'172:"'3371)

For all but the smallest distributions, impractical to write out




= A probabilistic model is a joint distribution

Probabilistic Models

over a set of random variables

= Probabilistic models:

(Random) variables with domains
Assignments are called outcomes

Joint distributions: say whether
assignments (outcomes) are likely

Normalized: sumto 1.0

Ideally: only certain variables directly
interact

= Constraint satisfaction probs:

Variables with domains

Constraints: state whether assignments
are possible

Ideally: only certain variables directly
interact

Distribution over T, W

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3

Constraint over TW

T W P
hot sun T
hot rain F

cold sun F
cold rain T




Events

An event is a set E of outcomes

P(Ey= >  P(z1...zn)

(z1...zn)€EE

From a joint distribution, we can calculate
the probabillity of any event

» Probability that it's hot AND sunny?
= Probability that it's hot?

= Probability that it's hot OR sunny?

Typically, the events we care about are
partial assignments, like P(T=hot)

T W P
hot sun 0.4
hot rain 0.1

cold sun 0.2
cold rain 0.3




Marginal Distributions

= Marginal distributions are sub-tables which eliminate variables
= Marginalization (summing out): Combine collapsed rows by adding

P(T)
P(T, W) T P
hot 0.5
! hd i |d 0.5
co .
hot sun 0.4 P(t) = Z P(t,s)
hot | rain 0.1 S P(W)

cold | rain 03[ P(s) =) _ P(t,s) sun 0.6
¢ rain 0.4

P(X1=uz1)=) P(X1=u21,Xp=u1) ;
LD



Conditional Probabilities

= A simple relation between joint and conditional probabilities
» |n fact, this is taken as the definition of a conditional probability

P(a,b)

P b
Palp) = P@)

P(b)

P(T, W) P(a) P(b)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3 8




Conditional Distributions

= Conditional distributions are probability distributions over
some variables given fixed values of others

Conditional Distributions Joint Distribution

- P(W|T = hot) P(T,W)

W P T W P
- sun 0.8 hot | sun 0.4
g rain 0.2 hot rain 0.1
= P(W|T — cold) cold sun 0.2
- cold rain 0.3

W P

sun 0.4

rain 0.6




Normalization Trick

= Atrick to get a whole conditional distribution at once:
= Select the joint probabilities matching the evidence
= Normalize the selection (make it sum to one)

P(T, W)
T W P P(T, ’I") P(T|T)
hot sun | 0.4 T R P T P
hot rain | 0.1 . hot | rain | 0.1 _ hot 0.25
Select ) Normalize
cold sun | 0.2 cold | rain | 0.3 cold | 0.75
cold rain | 0.3




Probabilistic Inference

* Probabilistic inference: compute a desired probability from
other known probabilities (e.g. conditional from joint)

= We generally compute conditional probabilities

= P(ontime | no reported accidents) = 0.90
» These represent the agent’s beliefs given the evidence

= Probabilities change with new evidence:
= P(ontime | no accidents, 5 a.m.) =0.95
= P(ontime | no accidents, 5 a.m., raining) = 0.80
= Observing new evidence causes beliefs to be updated
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Inference by Enumeration

General case:

= Evidence variables: F1...Lp =e1...¢; X1, X0, ... Xp
» Query* variable: Q |
= Hidden variables: H,...H, All variables

We want: P(Qley ...ex)

First, select the entries consistent with the evidence
Second, sum out H to get joint of Query and evidence:
Z P(Q,h1...hr,e1...€e)

P . =
(Qael 6k) hl...hr — — _/

X1,Xo,...Xn
Finally, normalize the remaining entries to conditionalize

Obvious problems:
= \Worst-case time complexity O(d")
= Space complexity O(d") to store the joint distribution



The Product Rule

= Sometimes have conditional distributions but want the joint

Paly) = Z8Y) =y P(a,y) = P(aly)P(y)

P(y)
= Example:
P(D|W) P(D,W)

P(W) D W P D W P
R P wet sun 0.1 wet sun 0.08
— o8 dry | sun | 0.9 <:’> dry | sun | 072
rain 0.2 wet rain 0.7 wet rain 0.14
dry | rain | 0.3 dry | rain | 086




The Chain Rule

= More generally, can always write any joint distribution as
an incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|r1)P(x3|T1,22)

P(x1,20,...2n) = H P(xi|lx1...2;-1)
7
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Bayes’ Rule

= Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|y)P(y) = P(y|lz)P(z)

= Dividing, we get:

= Why is this at all helpful?
= |ets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
= Foundation of many systems

= |n the running for most important Al equation! .



Independence

Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)

Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
» Usually variables aren’t independent!

Can use independence as a modeling assumption
» Independence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
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