## Review

### Probability

- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence

## Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
  - R = Is it raining?
  - D = How long will it take to drive to work?
  - L = Where am I?
- We denote random variables with capital letters
- Like variables in a CSP, random variables have domains
  - R in {true, false} (sometimes write as {+r, ¬r})
  - D in  $[0, \infty)$
  - L in possible locations, maybe {(0,0), (0,1), ...}

# **Probability Distributions**

Unobserved random variables have distributions

| P(T) |     |  |
|------|-----|--|
| Т    | Р   |  |
| warm | 0.5 |  |
| cold | 0.5 |  |

| 1 ( VV ) |     |  |
|----------|-----|--|
| W        | Р   |  |
| sun      | 0.6 |  |
| rain     | 0.1 |  |
| fog      | 0.3 |  |
| meteor   | 0.0 |  |

D(M)

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

$$P(rain) = 0.1$$

• Must have: 
$$\forall x P(x) \geq 0$$

$$\sum_{x} P(x) = 1$$

### Joint Distributions

• A *joint distribution* over a set of random variables:  $X_1, X_2, ... X_n$  specifies a real number for each assignment (or *outcome*):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$
  
 $P(x_1, x_2, \dots x_n)$ 

P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

• Must obey:

$$\sum_{(x_1, x_2, \dots x_n)} P(x_1, x_2, \dots x_n) = 1$$

 $P(x_1, x_2, \dots x_n) > 0$ 

For all but the smallest distributions, impractical to write out

### **Probabilistic Models**

- A probabilistic model is a joint distribution over a set of random variables
- Probabilistic models:
  - (Random) variables with domains Assignments are called *outcomes*
  - Joint distributions: say whether assignments (outcomes) are likely
  - Normalized: sum to 1.0
  - Ideally: only certain variables directly interact
- Constraint satisfaction probs:
  - Variables with domains
  - Constraints: state whether assignments are possible
  - Ideally: only certain variables directly interact

#### Distribution over T,W

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### Constraint over T,W

| Т    | W    | Р |
|------|------|---|
| hot  | sun  | Т |
| hot  | rain | L |
| cold | sun  | F |
| cold | rain | Т |

## **Events**

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
  - Probability that it's hot AND sunny?
  - Probability that it's hot?
  - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

## Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

| P | (T.   | W   | ) |
|---|-------|-----|---|
| _ | ( - ) | V V | J |

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

$$P(t) = \sum_{s} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

$$P(s) = \sum_{t} P(t, s)$$

| $\boldsymbol{\mathcal{D}}$ | ( | T | ٦) |
|----------------------------|---|---|----|
| 1                          | ĺ | 1 | J  |

| Τ    | Р   |
|------|-----|
| hot  | 0.5 |
| cold | 0.5 |

| W    | Р   |
|------|-----|
| sun  | 0.6 |
| rain | 0.4 |

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

### Conditional Probabilities

- A simple relation between joint and conditional probabilities
  - In fact, this is taken as the definition of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



| Т    | V    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



### **Conditional Distributions**

 Conditional distributions are probability distributions over some variables given fixed values of others

#### **Conditional Distributions**



Joint Distribution

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

### Normalization Trick

- A trick to get a whole conditional distribution at once:
  - Select the joint probabilities matching the evidence
  - Normalize the selection (make it sum to one)

| Т    | W    | Р   | P(T,r) |      |      |     | P(T       | r)   |   |
|------|------|-----|--------|------|------|-----|-----------|------|---|
| hot  | sun  | 0.4 | _      | Т    | R    | Р   |           | Т    |   |
| hot  | rain | 0.1 | Select | hot  | rain | 0.1 | Normalize | hot  | 0 |
| cold | sun  | 0.2 |        | cold | rain | 0.3 |           | cold | 0 |
| cold | rain | 0.3 |        |      |      |     |           |      |   |

### Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g. conditional from joint)
- We generally compute conditional probabilities
  - P(on time | no reported accidents) = 0.90
  - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
  - P(on time | no accidents, 5 a.m.) = 0.95
  - P(on time | no accidents, 5 a.m., raining) = 0.80
  - Observing new evidence causes beliefs to be updated

# Inference by Enumeration

#### General case:

- Evidence variables:  $E_1 \dots E_k = e_1 \dots e_k$  Query\* variable: Q Hidden variables:  $H_1 \dots H_r$
- We want:  $P(Q|e_1 \dots e_k)$
- First, select the entries consistent with the evidence
- Second, sum out H to get joint of Query and evidence:

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} \underbrace{P(Q, h_1 \dots h_r, e_1 \dots e_k)}_{X_1, X_2, \dots X_n}$$

- Finally, normalize the remaining entries to conditionalize
- Obvious problems:
  - Worst-case time complexity O(d<sup>n</sup>)
  - Space complexity O(d<sup>n</sup>) to store the joint distribution

### The Product Rule

Sometimes have conditional distributions but want the joint

$$P(x|y) = \frac{P(x,y)}{P(y)} \qquad \longleftarrow \qquad P(x,y) = P(x|y)P(y)$$

Example:

| R    | Р   |
|------|-----|
| sun  | 8.0 |
| rain | 0.2 |

### P(D|W)

| D   | W    | Р   |
|-----|------|-----|
| wet | sun  | 0.1 |
| dry | sun  | 0.9 |
| wet | rain | 0.7 |
| dry | rain | 0.3 |



### P(D,W)

| D   | W    | Р     |
|-----|------|-------|
| wet | sun  | 0.08  |
| dry | sun  | 0.72  |
| wet | rain | 0.14  |
| dry | rain | 01.86 |

### The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$
$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i|x_1 \dots x_{i-1})$$

# Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
  - Lets us build one conditional from its reverse
  - Often one conditional is tricky but the other one is simple
  - Foundation of many systems
- In the running for most important AI equation!

## Independence

Two variables are independent in a joint distribution if:

$$P(X,Y) = P(X)P(Y)$$

$$\forall x, y P(x, y) = P(x)P(y)$$

- Says the joint distribution factors into a product of two simple ones
- Usually variables aren't independent!
- Can use independence as a modeling assumption
  - Independence can be a simplifying assumption
  - Empirical joint distributions: at best "close" to independent