L ISolving problems by searching

Chapter 3

CS 1571

q 1 Outline

|
Problem-solving agents

Problem formulation
Example problems
Basic search algorithms

CS 1571 - Blind Search

q 1 Goal-based Agents

|
Agents that take actions in the pursuit of a
goal or goals.

CS 1571 - Blind Search 3

q 1 Goal-based Agents

|
What should a goal-based agent do when
none of the actions it can currently perform
results in a goal state?

Choose an action that at least leads to a
state that is closer to a goal than the current
one is.

CS 1571 - Blind Search 4

q 1 Goal-based Agents
|

Making that work can be tricky:

What if one or more of the choices you make
turn out not to lead to a goal?

What if you're concerned with the best way
to achieve some goal?

What if you're under some kind of resource
constraint?

CS 1571 - Blind Search 5

q] Problem Solving as Search
|

One way to address these issues is to view
goal-attainment as problem solving, and
viewing that as a search through a state
space.

In chess, e.q., a state is a board configuration

CS 1571 - Blind Search 6

q] Problem-solving agents

function SiMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action
static: seg, an action sequence, initially empty
state, some description of the current world state
goal, a goal, initially null
problem, a problem formulation

state «+ UPDATE-STATE(state, percept)

if seq is empty then do
goal+ FORMULATE-GOAL(state)
problem <+ FORMULATE- PROBLEM(state, goal)
seq+— SEARCH(problem)

action < FIRST(seq)

seq <+ REST(seq)

return action

CS 1571 - Blind Search

q] Problem Solving

|
A problem is characterized as:

An initial state
A set of actions
A goal test

A cost function

CS 1571 - Blind Search

q] Problem Solving

|
A problem is characterized as:

An initial state

A set of actions

successors: state - set of states
A goal test

goalp: state - true or false

A cost function
edgecost: edge between states 2> cost

CS 1571 - Blind Search

q 1Example Problems

I

Toy problems (but sometimes useful)
Tllustrate or exercise various problem-solving methods
Concise, exact description
Can be used to compare performance

Examples. 8-puzzle, 8-queens problem, Cryptarithmetic, Vacuum
world, Missionaries and cannibals, simple route finding

Real-world problem
More difficult
No single, agreed-upon description

Examples. Route finding, Touring and traveling salesperson
problems, VLSI layout, Robot navigation, Assembly sequencing

CS 1571 - Blind Search

10

q | Toy Problems: The vacuum world

e The vacuum world

— The world has only two
locations

— Each location may or may
not contain dirt

— The agent may be in one
location or the other

— 8 possible world states

— Three possible actions:
Left, Right, Suck

— Goal: clean up all the dirt

L7171 L7]

(-]
&
w

&

CS 1571 - Blind Search

11

q | Toy Problems:The vacuum world

States: one of the 8 states given earlier
Actions: move left, move right, suck
Goal test. no dirt left in any square
Path cost. each action costs one

)
J'o
GHGE

GGG

GEGG

Jea

DRGD

Jea
BEEE

GHEG

Jea

Jo

/)

TS 1571 - DI

12

q | Missionaries and cannibals

I
e Missionaries and cannibals

— Three missionaries and three
cannibals want to cross a river

— There is a boat that can hold two
people

— Cross the river, but make sure that
the missionaries are not

outnumbered by the cannibals on
either bank

¢ Needs a lot of abstraction

— Crocodiles in the river, the weather
and so on

— Only the endpoints of the crossing
are important

— Only two typescg£5916 Olglg Search e

q | Missionaries and cannibals

I
Problem formulation

States: ordered sequence of three numbers representing the
number of missionaries, cannibals and boats on the bank of the river
from which they started. The start state is (3, 3, 1)

Actions:. ?
Goal test. ?
Path cost. ?

CS 1571 - Blind Search 14

1| Water jug
- 3

= There are 2 empty water jugs, one holding 4
gallons, one holding 3 gallons. Fill the 4 gallon jug
with exactly 2 gallons of water.

= Problem formulation
States: ?
Actions. ?
Goal test. ?
Path cost?

= Search space?

CS 1571 - Blind Search 15

1 | IReal—world problems
w1

= Route finding

Specified locations and transition along links between them

Applications. routing in computer networks, automated travel
advisory systems, airline travel planning systems

= Touring and traveling salesperson problems
"Visit every city on the map at least once and end in Bucharest”
Needs information about the visited cities
Goal: Find the shortest tour that visits all cities

NP-hard, but a lot of effort has been spent on improving the
capabilities of TSP algorithms

Applications. planning movements of automatic circuit board drills

CS 1571 - Blind Search 16

q] What is a Solution?

|
A sequence of actions that when performed
will transform the initial state into a goal
state (e.g., the sequence of actions that gets
the missionaries safely across the river)

Vacuum solution?

CS 1571 - Blind Search 17

q] Example: Romania

I
On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

?
Formulate problem:

states: ?

actions: ?

Find solution:
?

CS 1571 - Blind Search 18

q 1 Example: Romania

CS 1571 - Blind Search

q | Selecting a state space

I

Real world is absurdly complex
- state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions

e.g., "Arad > Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

For guaranteed realizability, any real state "in Arad" must
get to some real state "in Zerind"

(Abstract) solution =
set of real paths that are solutions in the real world

Each abstract action should be "easier" than the original
problem

CS 1571 - Blind Search

20

10

q | Example: The 8-puzzle

’7 2 ||l 4 1| 2

OO0 NEnE

‘B 3 ||| 1 6| 71|l 8
states?
actions?
goal test?
ath cost?

CS 1571 - Blind Search 21

q 1 Initial Assumptions

|
The agent knows its current state

Only the actions of the agent will change the
world

The effects of the agent'’s actions are known
and deterministic

All of these are defeasible... likely to be wrong
in real settings.

CS 1571 - Blind Search 22

11

q 1 Another Assumption

|
Searching/problem-solving and acting are
distinct activities

First you search for a solution (in your head)
then you execute it

CS 1571 - Blind Search 23

q | Tree search algorithms

Basic idea:

offline, simulated exploration of state space by
generating successors of already-explored states
(a.k.a.~expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

CS 1571 - Blind Search 24

1 | ITree search example
=

D

_Sbiu_T» Timisoaray
~ o <

CS 1571 - Blind Search 25
1 | Tree search example
- 3
< And
CS 1571 - Blind Search 26

13

1 | ITree search example
=

CAmd
@_I
CAnd > @rmeWemy < Aad T Lugo) ““Amd > < Diadea

CS 1571 - Blind Search

27

1 | IImplementation: general tree search

function TREE-SEARCH(problem, fringe) returns a solution, or failure
fringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
fringe < INSERT ALL(EXPAND(node, problem), fringe)

function ExPAND(node, problem) returns a set of nodes

successors < the empty set

for each action, result in SUCCESSOR-FN[problem|(STATE[node]) do
s+ a new NODE
PARENT-NODE[s] « node; ACTION[s] < action; STATE[s] < result
PaTH-Co8T(s] +~ PATH-CoOST[node] + STEP-COST(node, action, s)
DepTH[s] + DEPTH[node] + 1
add s to successors

return successors

CS 1571 - Blind Search

28

14

q | Implementation: states vs. nodes

I
A state is a (representation of) a physical configuration

A node is a data structure constituting part of a search tree
includes state, parent node, action, path cost g(x), depth

parent, action

State IE‘ E Node depth =6
g=6

(s)] 1]

G

The Expand function creates new nodes, filling in the
various fields and using the successorFn of the problem
to create the corresponding states.

CS 1571 - Blind Search 29

q 1 Search strategies

A search strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following dimensions:
completeness: does it always find a solution if one exists?
time complexity: number of nodes generated
space complexity: maximum number of nodes in memory
optimality: does it always find a least-cost solution?
Time and space complexity are measured in terms of
b: maximum branching factor of the search tree
d: depth of the least-cost solution
m: maximum depth of the state space (may be «)

CS 1571 - Blind Search 30

15

q | Uninformed search strategies

|
Uninformed search strategies use only the
information available in the problem
definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search

CS 1571 - Blind Search

31

q | Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., hew successors go

at end
>®

CS 1571 - Blind Search

32

16

q | Breadth-first search

|
Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4)
>(5) (S

CS 1571 - Blind Search 33

q | Breadth-first search

|
Expand shallowest unexpanded node
Implementation:

fringe is a FIFO queue, i.e., hew successors go
at end

(S 15/1 - BIINA Search 34

17

1 | |Breadth—first search
w4

= Expand shallowest unexpanded node

= Implementation:
fringe is a FIFO queue, i.e., new successors go

at end
(4)
(B) =
>@ © O ©

CS 1571 - Blind Search 35

1 | 8-Puzzle
- i

= Done in class

CS 1571 - Blind Search 36

18

q | Properties of breadth-first search
|
Complete? Yes (if bis finite)
Time? 1+b+b2+b3+... +b7 + b(b7-1) = O(bd+1)
Space? O(b°*1) (keeps every node in memory)
Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

CS 1571 - Blind Search 37

q | Uniform-cost search

I
Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost
Equivalent to breadth-first if step costs all equal
Complete? Yes, if step cost = €

Time? # of nodes with g < cost of optimal solution,
O(b-eiing(€/¢)) where C is the cost of the optimal solution

Space? # of nodes with g < cost of optimal solution,
O(bce///ng(C */ €))
Optimal? Yes — nodes expanded in increasing order of g(n)

CS 1571 - Blind Search 38

19

q] Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Q)

CS 1571 - Blind Search 39

q] Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

Q
(5] LS)

CS 1571 - Blind Search 40

20

1 | |Depth—first search
w4

= Expand deepest unexpanded node

= Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 41

1 | Depth-first search
w1

= Expand deepest unexpanded node

= Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 42

21

q] Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 43

q] Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 44

22

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 45

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 46

23

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 47

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

€]
>(r) G

CS 1571 - Blind Search 48

24

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 49

q 1 Depth-first search

I
Expand deepest unexpanded node

Implementation:
fringe = LIFO queue, i.e., put successors at front

CS 1571 - Blind Search 50

25

q | 8-Puzzle

|
Done in class

CS 1571 - Blind Search 51

q | Properties of depth-first search

I
Complete? No: fails in infinite-depth spaces, spaces
with loops

Modify to avoid repeated states along path
- complete in finite spaces

Time? O(b"). terrible if mis much larger than d

but if solutions are dense, may be much faster than
breadth-first

Space? O(bm), i.e., linear space!
Optimal? No

CS 1571 - Blind Search 52

26

1 | Depth-limited search
=

= depth-first search with depth limit /
i.e., nodes at depth /have no successors

= Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL- STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail / cutoff
cutoff-oceurred «+ false
if GOAL-TEST[problem|(STATE[node]) then return SOLUTION(node)
else if DEPTH[node| = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result +— RECURSIVE-DLS(successor, problem, limit)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

CS 1571 - Blind Search

53

IIIterative deepening search

function ITERATIVE-DEEPENING- SEARCH(problem) returns a solution, or fail-
ure
inputs: problem, a problem

for depth<+ 0 to oo do
result +— DEPTH-LIMITED- SEARCH(problem, depth)
if result # cutoff then return result

CS 1571 - Blind Search

54

27

1] IIterative deepening search [=0
ap &

Limit =0 R0} ®

CS 1571 - Blind Search 55

1] lIterative deepening search [=1
ap o

e >®/®\® o/®\© o/‘\o

CS 1571 - Blind Search 56

28

1] IIterative deepening search [=2

SN SN,
WO PP

Limit=2 20}

?>

CS 1571 - Blind Search 57

1] lIterative deepening search [=3
|

xi\
i

CS 1571 - Blind Search 58

Limit=3 20]

ﬁ“
et

%3
?)%3

29

q | Iterative deepening search

Number of nodes generated in a depth-limited search to
depth ¢ with branching factor &

Npys =00 +b" + P + .. +b52+ 7 + b

Number of nodes generated in an iterative deepening
search to depth ¢ with branching factor &

Npps = (d+1)b° + d b~ + (d-1)b”2 + ... + 3bd2 +2bd! + 1bd
For b =10 d =5,

Nps=1+ 10 + 100 + 1,000 + 10,000 + 100,000 = 111,111
Npps = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 = 123,456

Overhead = (123,456 - 111,111)/111,111 = 11%

CS 1571 - Blind Search 59

ITUpPCIUCS Ul 1l atl Ve UCCTPUCIILT S

q | search

|
Complete? Yes

Time? (d+1D° +d b + (d-1)B + ... + b7 =
Oo(t°)

Space? O(bd)

Optimal? Yes, if step cost = 1

CS 1571 - Blind Search 60

30

q] Summary of algorithms

Criterion Breadth- ~ Uniform- Depth- Depth- lterative
First Cost First Limited Deepening
Complete? Yes Yes No No Yes
Time o+l opley o™ o o(b?)
Space OBy Oy O(bm) o(bl) O(bd)
Optimal? Yes Yes No No Yes

CS 1571 - Blind Search

61

q 1 Repeated States

|
Failure to detect repeated states can turn a
solvable problem into an unsolveable
problem!
Examples — 8 puzzle, Romania (e.g., reversible
actions)
Detection means comparing the node to be
expanded to those that have been
expanded, and discarding a path when a
match is found

CS 1571 - Blind Search

62

31

q 1 Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed+<— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE([problem]), fringe)
loop do
if fringe is empty then return failure
node < REMOVE-FRONT(fringe)
if GoAL-TEST[problem](STATE[node]) then return SOLUTION(node)
if STATE[R0de] is not in closed then
add STATE[node] to closed
fringe < INSERTALL(EXPAND(node, problem), fringe)

CS 1571 - Blind Search 63

q 1 Summary

I

Problem formulation usually requires abstracting away real-
world details to define a state space that can feasibly be
explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not
much more time than other uninformed algorithms

CS 1571 - Blind Search 64

32

