
The chance that I arrive late to work is dependent on two factors: my morning routine 
being miserable, and whether the bus is delayed to my stop. The time that I arrive at 
work influences whether I get a coffee; it also influences whether I decide to stay late at 
work in the evening. (Inference question: suppose it’s past 6pm, and you wanted to ask 
me a question about an assignment; you saw me getting a coffee in the morning. what 
is the chance that I am still in my office?) 
 
Step 1: Create random variables, e.g., Miz Morning (M), Bus Delay (B), I’m Late (L), 
Coffee (C), and Work Late (W).  
 
Step 2: Connect variables that directly impact each 
other, then specify conditional probability tables (CPTs) 
for each node given the topology, e.g.: 
 

MizMorning:M P(M) 

true .9 

false .1 
 

BusDelay:B P(B) 

true .4 

false .6 
 

I’mLate:L P(L|M=true,B=true) P(L|M=true,B=false) P(L|M=false,B=true) P(L|M=false, B=false) 

true .8 .7 .6 .1 

false .2 .3 .4 .9 
 

Coffee:C P(C | L=true) P(C | L=false) 

true .3 .6 

false .7 .4 
 

WorkLate:W P(W | L=true) P(W | L=false) 

true .4 .2 

false .6 .8 
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We can build the full joint probability distribution for P(M,B,L,C,W), which will allow us to 
make quantitative inferences. We do this by multiplying the appropriate conditional 
probabilities by visiting each node; we’ll traverse the structure starting at the roots, 
going from parent nodes to child nodes. 
 

P(M,B,L,C,W) = P(M) P(B) P(L|M, B) P(C | L) P(W|L) 
 
Then we can reason, e.g. 
 
   Pr(M=true,B=true,L=true,C=false,W=true)  
= Pr(M=true)Pr(B=true)Pr(L=true|M=true, B=true)Pr(C=false | L=true)Pr(W=true|L=true) 
= 0.9*0.4*0.8*0.7*0.4 
 
Another example: If we know there is a bus delay, how often do I stay late vs not? 
 
  P(W | B=true) = P(W, B=true) / Pr(B=true).  Consider the numerator: 
  P(W, B=t)  
= suml={t/f}  sumc={t/f} summ={t/f} P(W, B=t, L=l, C=c, M=m)  
= suml={t/f}  sumc={t/f} summ={t/f} Pr(M=m)Pr(B=t)Pr(L=l|M=m,B=t)Pr(C=c|L=l)P(W|L=l) 
 
Below, we enumerate each term of the summation: 

l c m P(W, B=t, L=l, C=c, M=m) 

t t t Pr(B=t)Pr(M=t)Pr(L=t|M=t,B=t)Pr(C=t|L=t)P(W|L=t) 
[0.9*0.4*0.8*0.3*0.4,  0.9*0.4*0.8*0.3*0.6]  

t t f Pr(B=t)Pr(M=f)Pr(L=t|M=f,B=t)Pr(C=t|L=t)P(W|L=t) 
[0.1*0.4*0.6*0.3*0.4, 0.1*0.4*0.6*0.3*0.6]  

t f t Pr(B=t)Pr(M=t)Pr(L=t|M=t,B=t)Pr(C=f|L=t)P(W|L=t) 
[0.9*0.4*0.8*0.7*0.4, 0.9*0.4*0.8*0.7*0.6]  

t f f Pr(B=t)Pr(M=f)Pr(L=t|M=t,B=t)Pr(C=f|L=t)P(W|L=t) 
[0.1*0.4*0.6*0.7*0.4, 0.1*0.4*0.6*0.7*0.6] 

f t t Pr(B=t)Pr(M=t)Pr(L=f|M=t,B=t)Pr(C=t|L=f)P(W|L=f) 
[0.9*0.4*0.2*0.6*0.2,  0.9*0.4*0.8*0.6*0.8] 

f t f Pr(B=t)Pr(M=f)Pr(L=f|M=f,B=t)Pr(C=t|L=f)P(W|L=f) 
[0.1*0.4*0.4*0.6*0.2, 0.1*0.4*0.4*0.6*0.8] 

f f t Pr(B=t)Pr(M=t)Pr(L=f|M=t,B=t)Pr(C=f|L=f)P(W|L=f) 
[0.9*0.4*0.2*0.4*0.2,  0.9*0.4*0.8*0.4*0.8] 

f f f Pr(B=t)Pr(M=f)Pr(L=f|M=f,B=t)Pr(C=f|L=f)P(W|L=f) 
[0.1*0.4*0.4*0.4*0.2, 0.1*0.4*0.4*0.4*0.8] 

 



Doing this naively, we’d have to perform 32 multiplications and 7 adds (4 multiplications 
per product term; we have 8 product terms to add) for each possible outcomes of W 
(i.e., we have to do this for both W=true and W=false). 
 
In listing out all the product terms, we see that we do a lot of repeated work. For 
example, in four out of the eight terms, we always multiply Pr(M=true)*Pr(B=true). In 
fact, since we are given that B=true in the problem, we know that all 8 terms will contain 
Pr(B=true). We can do less computation if we factor out common terms. 
P(W,B=t)=suml={t/f}sumc={t/f}summ={t/f}Pr(M=m)Pr(B=t)Pr(L=l|M=m,B=t)Pr(C=c|L=l)P(W|L=l) 
   = 
Pr(B=t)*[summ={t/f}Pr(M=m)*[suml={t/f}Pr(L=l|M=m,B=t)*P(W|L=l)*[sumc={t/f}Pr(C=c|L=l)]]] 
 
Now for the denominator. Note that we can calculate Pr(B=true) easily once we have 
P(W, B=true) because we just have to sum out W: Pr(B=true) = Pr(W=true, B=true) + 
Pr(W=false, B=true). Although we can work directly from the full joint (summing out W, 
L, C, M) that would require a lot more work.  

  



Naïve Bayes: Special Case of Bayesian Network  
Suppose we want a system to scan our incoming emails and then decide to bin each 
into one of three categories: work, school, social. Suppose we want to do this with a 
Bayesian Network. Assume that you have a pretty sizable collection of old emails that 
have been correctly categorized. 
 
For this example, let’s simplify it to a problem of modeling the joint relationship between 
the category and a small set of N keywords that we think will help us distinguish 
between the three categories. So we want a network with N+1 nodes/variables. 
Whatever network we design, it will help us to compute the full joint distribution 

P(Category, W1, … WN) 
from which we will be able to make inferences when given a new email.  
 
For example, suppose that “homework” and “dinner” are two of the keywords, and 
suppose both these words appeared in the email we want to categorize, but none of the 
other N-2 keywords appeared. What we want to infer from the above full joint is: 

max c={sch, work, soc} Pr(Category=c | Homework=t, …, Dinner=t) 
This can be computed as: 

max c={sch, work, soc} Pr(Category=c , Homework=t, …, Dinner=t) 
since all three choices of c share the same denominator Pr(Homework=t, … Dinner=t). 

 
 
Naïve Bayes Model:  

The root node is a random variable over the 
category (work, school, social). It has many 
children nodes. Each child node is a Boolean 
random variable, specifying whether the email 
contains some particular word or not (e.g., in the 
figure to the left, the first child node is for whether 
the word “homework” appeared in the email or not, 
given the category.). All children nodes are 
conditionally independent of each other. The full 
joint is computed as: 

 P(Category, W1, … WN) = P(Category)*P(W1|Category)*...*P(WN|Category) 
 
To use it to answer the specific instance above (“homework” and “dinner” were the only 
two keywords that appeared in the email), we’d compute: 
Pr(Category=sch)*Pr(Homework=t | Category=sch) * … * Pr(Dinner=t | Category=sch) 
Pr(Category=soc)*Pr(Homework=t | Category=soc) * … * Pr(Dinner=t | Category=soc) 
Pr(Category=work)*Pr(Homework=t | Category=work) *…* Pr(Dinner=t|Category=work) 
And we’d categorize the email as whichever one that has the largest probability 
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