CS 1571: Homework 1
Search (Chapter 3)

Answer key:

1 Formulating Search Problems (50 pts)

Grading Criteria:

Each of the sub-problems (a) and (b) was graded for 25 pts. In both sub-problems, each
of the pieces of information: initial state, successor function, goal test, and cost function
were worth 5 points. Full credit was awarded for each piece if it included some answers
similar to the solutions, or another variant that represented the problem in an accurate
way, which was precise enough to be implemented. One point was awarded for solutions
that included a good deal of the solution but were not quite right, or at least a good
attempt. Zero points were awarded for solutions, which were too vague or completely
wrong.

(a)

States: An unordered list of un-stacked items which can include yourself, the fridge and
the chair. An ordered list of stacked items where items earlier on the list are stacked
under items later on the list (i.e., a 2-tuple containing <un-stacked list, stacked list>)

Initial state: Initially <{you, chair, fridge},{}>.

Successor function: The actions that can be performed are moving any item from the un-
stacked list to the stacked list, or moving the last item from the stacked list to the un-
stacked list. That is:

Successor(<{you, fridge, chair},{}>) = {
<stack(you),<{fridge, chair},{you}>>,
<stack(fridge),<{you, chair},{fridge}>>,
<stack(chair),<{you, fridge},{chair }>> }
Successor(<{you, fridge},{chair}>) = { <stack(fridge),<{you},{chair, fridge}>>, ...}

All successors need not be shown in the solution, just enough to demonstration a good
understanding of what the successor function is.

Goal test: Any state where you have <{},{x, x, you}> where x can be any item, or
alternatively (a more robust goal test) any state such that stacked set has you on the right
and summing the heights of the items in the list leads to a height > 9 feet.

Cost function: The following cost functions were acceptable

* The number of moves you make.

* Some form of cost using hypothetical weights of the items and/or the distance they were
moved and/or the height they were lifted.



(b)
States: The set of actors guessed so far and the last actor guessed, i.e. the pair < X, x >,
where X’ < X is the set of guesses, and x is the last actor.

Initial state: There have been no guesses, and the first player may begin by guessing any
actor, i.e.{<P,x, >x, € X |}.

Successor function: Add an actor y to the current set of guesses such that y is a co-star of
X in some movie, i.e. successor (X,x) = {<add(y), (X U {y}, y)> | y co-stars with x}.

Goal test: Any state with no successor state. That is < X’, x > such that there are no
actors y co-starring with x that have not already been guessed.

Cost function: The number of guesses so far, IX’I.

2 Blind search (50 pts)

Grading criteria:

Parts (a) is 10 points

Part (b) is 20 points. 10 points for BFS and 10 points for DFS

Part (c) is 20 points. 5 points for search space size and 15 points for the explanation. You
should correctly describe the properties of BFS and DFS algorithm.

(a)

(b)
Breadth First Search: 1,2,3,4,5,6,7,8,9, 10
Depth First Search: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 ...

(c)

The search space is infinite (all positive integers).

I will choose the BFS because it is guaranteed to find the optimal solution (if the optimal
solution exists). Although DFS uses less memory, it might get stuck going down a very
long path. For example, if the solution is node 6, DFS will explore the whole left sub-tree.



