
1

First-Order Logic

Chapter 8

Outline

• Why FOL?

• Syntax and semantics of FOL

• Knowledge engineering in FOL

2

Pros and cons of propositional
logic

☺ Propositional logic is declarative

☺ Propositional logic allows partial/disjunctive/negated
information
– (unlike most data structures and databases)

☺ Propositional logic is compositional:
– meaning of B1,1 ∧ P1,2 is derived from meaning of B1,1 and of P1,2

☺ Meaning in propositional logic is context-independent
– (unlike natural language, where meaning depends on context)

� Propositional logic has very limited expressive power
– (unlike natural language)

– E.g., cannot say "pits cause breezes in adjacent squares“

• except by writing one sentence for each square

First-order logic

• Whereas propositional logic assumes the
world contains facts,

• first-order logic (like natural language)
assumes the world contains
– Objects: people, houses, numbers, colors,

baseball games, wars, …

– Relations: red, round, prime, brother of,
bigger than, part of, comes between, …

– Functions: father of, best friend, one more
than, plus, …

3

FOL Syntax

• Add variables and quantifiers to

propositional logic

Syntax of FOL: Basic elements

• Constants KingJohn, 2, Pitt,...

• Predicates Brother, >,...

• Functions Sqrt, LeftLegOf,...

• Variables x, y, a, b,...

• Connectives ¬, ⇒, ∧, ∨, ⇔

• Equality =

• Quantifiers ∀, ∃

4

Atomic sentences

Atomic sentence = predicate (term1,...,termn)

or term1 = term2

Term = function (term1,...,termn)

or constant or variable

• E.g., Brother(KingJohn,RichardTheLionheart)

• > (Length(LeftLegOf(Richard)),Length(LeftLegOf(KingJohn)))

Complex sentences

• Complex sentences are made from atomic

sentences using connectives

¬S, S1 ∧ S2, S1 ∨ S2, S1⇒ S2, S1 ⇔ S2,

E.g. Sibling(KingJohn,Richard) ⇒

Sibling(Richard,KingJohn)

>(1,2) ∨ ≤ (1,2)

>(1,2) ∧ ¬ >(1,2)

5

Sentence � AtomicSentence |

(Sentence Connective Sentence) |

Quantifier Variable, .. Sentence |

~Sentence

AtomicSentence � Predicate(Term,…) | Term = Term

Term � Function(Term,…) |

Constant |

Variable

Connective � � | ^ | v | �

Quantifier � all, exists

Constant � john, 1, …

Variable � A, B, C, X

Predicate � breezy, sunny, red

Function � fatherOf, plus

Knowledge engineering involves deciding what types of things

Should be constants, predicates, and functions for your problem

Propositional Logic vs FOL

B23 � (P32 v P 23 v P34 v P 43) …

“Internal squares adjacent to pits are

breezy”:

All X Y (B(X,Y) ^ (X > 1) ^ (Y > 1) ^ (Y < 4) ^

(X < 4)) �

(P(X-1,Y) v P(X,Y-1) v P(X+1,Y) v (X,Y+1))

6

FOL (FOPC) Worlds

• Rather than just T,F, now worlds contain:

• Objects: the gold, the wumpus, …
“the domain”

• Predicates: holding, breezy

• Functions: sonOf

Ontological commitment

Truth in first-order logic

• Sentences are true with respect to a model and an interpretation

• Model contains objects (domain elements) and relations among them

• Interpretation specifies referents for
constant symbols → objects

predicate symbols → relations

function symbols → functional relation

Interpretation: assignment of elements from the world to elements of the
language

• An atomic sentence predicate(term1,...,termn) is true

iff the objects referred to by term1,...,termn

are in the relation referred to by predicate

7

Quantifiers

• All X p(X) means that p holds for all

elements in the domain

• Exists X p(X) means that p holds for at
least one element of the domain

Universal quantification

• ∀<variables> <sentence>

Everyone at Pitt is smart:

∀x At(x,Pitt) ⇒ Smart(x)

• ∀x P is true in a model m iff P is true with x being each
possible object in the model

• Roughly speaking, equivalent to the conjunction of
instantiations of P

At(KingJohn,Pitt) ⇒ Smart(KingJohn)

∧ At(Richard,Pitt) ⇒ Smart(Richard)

∧ At(Pitt,Pitt) ⇒ Smart(Pitt)

∧ ...

8

A common mistake to avoid

• Typically, ⇒ is the main connective with ∀

• Common mistake: using ∧ as the main

connective with ∀:

∀x At(x,Pitt) ∧ Smart(x)

means “Everyone is at Pitt and everyone is smart”

Existential quantification

• ∃<variables> <sentence>

• Someone at Pitt is smart:

• ∃x At(x,Pitt) ∧ Smart(x)

• ∃x P is true in a model m iff P is true with x being some
possible object in the model

• Roughly speaking, equivalent to the disjunction of
instantiations of P

At(KingJohn,Pitt) ∧ Smart(KingJohn)

∨ At(Richard,Pitt) ∧ Smart(Richard)

∨ At(Pitt,Pitt) ∧ Smart(Pitt)

∨ ...

9

Another common mistake to
avoid

• Typically, ∧ is the main connective with ∃

• Common mistake: using ⇒ as the main
connective with ∃:

∃x At(x,Pitt) ⇒ Smart(x)

is true if there is anyone who is not at Pitt!

Examples

• Everyone likes chocolate

• Someone likes chocolate

• Everyone likes chocolate unless they are allergic to it

10

Examples

• Everyone likes chocolate
– ∀X person(X) � likes(X, chocolate)

• Someone likes chocolate
– ∃X person(X) ^ likes(X, chocolate)

• Everyone likes chocolate unless they are allergic to it
– ∀X (person(X) ^ ¬allergic (X, chocolate)) �

likes(X, chocolate)

Properties of quantifiers

• ∀x ∀y is the same as ∀y ∀x

• ∃x ∃y is the same as ∃y ∃x

• ∃x ∀y is not the same as ∀y ∃x

• ∃x ∀y Loves(x,y)
– “There is a person who loves everyone in the

world”

• ∀y ∃x Loves(x,y)
– “Everyone in the world is loved by at least one

person”

11

Nesting of Variables

1. Everyone likes some kind of food

2. There is a kind of food that everyone likes

3. Someone likes all kinds of food

4. Every food has someone who likes it

Put quantifiers in front of likes(P,F)

Assume the domain of discourse of P is the set of people

Assume the domain of discourse of F is the set of foods

Answers
(DOD of P is people and F is food)

Everyone likes some kind of food

All P Exists F likes(P,F)

There is a kind of food that everyone likes

Exists F All P likes(P,F)

Someone likes all kinds of food

Exists P All F likes(P,F)

Every food has someone who likes it

All F Exists P likes(P,F)

12

Answers, without Domain of
Discourse Assumptions

Everyone likes some kind of food

All P person(P) � Exists F food(F) and likes(P,F)

There is a kind of food that everyone likes

Exists F food(F) and (All P person(P) � likes(P,F))

Someone likes all kinds of food

Exists P person(P) and (All F food(F) � likes(P,F))

Every food has someone who likes it

All F food (F) � Exists P person(P) and likes(P,F)

Quantification and Negation

• ~(∀x p(x)) equiv ∃x ~p(x)

• ~(∃x p(x)) equiv ∀x ~p(x)

• Quantifier duality: each can be expressed using the
other

• ∀x Likes(x,IceCream) ¬∃x ¬Likes(x,IceCream)

• ∃x Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli)

13

Equality

• term1 = term2 is true under a given interpretation
if and only if term1 and term2 refer to the same
object

• E.g., definition of Sibling in terms of Parent:

∀x,y Sibling(x,y) ⇔ [¬(x = y) ∧ ∃m,f ¬ (m = f) ∧

Parent(m,x) ∧ Parent(f,x) ∧ Parent(m,y) ∧ Parent(f,y)]

Representational Schemes

• What are the objects, predicates, and functions?
Keep in mind that you need to encode
knowledge of specific problem instances and

general knowledge.

• In practice, consider interpretations just to
understand what the choices are. The world
and interpretation are defined, or at least
constrained, through the logical sentences we
write.

14

Example Choice:
Predicates versus Constants

• Rep-Scheme 1: Let’s consider the world: D =
{a,b,c,d,e}. green: {a,b,c}. blue: {d,e}. Some
sentences that are satisfied by the intended
interpretation:

green(a). green(b). blue(d).

~(All x green(x)). All x green(x) v blue(x).

But what if we want to say that blue is pretty?

Choice:
Predicates versus Constants

• Rep-Scheme 2: The world: D = {a,b,c,d,e,green,blue}

colorof:
{<a,green>,<b,green>,<c,green>,<d,blue>,<e,blue>}
pretty: {blue} notprimary: {green}

• Some sentences that are satisfied by the intended interpretation:

colorOf(a,green). colorOf(b,green). colorOf(d,blue).

~(All X colorOf(X,green)).

All X colorOf(X,green) v colorOf(X,blue).

pretty(blue). notprimary(green).

We have reified predicates blue and green: made them into objects

15

Knowledge engineering in FOL

1. Identify the task

2. Assemble the relevant knowledge

3. Decide on a vocabulary of predicates,
functions, and constants

4. Encode general knowledge about the domain

5. Encode a description of the specific problem
instance

6. Pose queries to the inference procedure and
get answers

7. Debug the knowledge base

Summary

• First-order logic:

– objects and relations are semantic primitives

– syntax: constants, functions, predicates,

equality, quantifiers

• Increased expressive power: e.g., better to

define wumpus world

