L lInformed Search and Exploration

Chapter 4 (4.3)

CS 1571

q | Overview

I

4.1-4.2: Heuristic Search
Best-First Search Approach
Greedy
A*
Heuristic Functions

4.3: Local Search and Optimization
Hill-climbing
Simulated Annealing
Local Beam
Genetic Algorithms

CS 1571 — Informed Search

q 1 Local Search / Optimization

|
Idea is to find the best state.

We don't really care how to get to the best
state, just that we get there.

The best state is defined according to an
objective function

Measures the “fithess” of a state.
Problem: Find the optimal state

The one that maximizes (or minimizes) the
objective function.

CS 1571 — Informed Search

q | Properties

|

Search the space of “complete”
configurations

Take advantage of local moves

Make “local” changes to “complete”
configurations

Keep track of just one state (the current
state)

No memory of past states

No search tree is necessary!

CS 1571 — Informed Search

1| |State Space Landscapes
W =

Objective Function

State Space

CS 1571 — Informed Search 5

1 | |Problem Formulation
=

= Complete-state formulation
Start with an approximate solution and perturb

= N-queens problem

Place n queens on a board so that no queen is
attacking another queen.

= The quality of a board configuration = the number of
constraints violated (examples in class)

= Solving = minimize the number of constraint
violations

CS 1571 — Informed Search 6

1 | |Problem Formulation
w4

= Initial State: n queens placed randomly on
the board, one per column.

= Successor function: States that obtained by
moving one queen to a new location in its
column.

= Heuristic/objective function: The number of
pairs of attacking queens.

CS 1571 — Informed Search

CS 1571 — Informed Search

q 1 Local Search Algorithms

|
Hill climbing

Simulated annealing
Local beam search
Genetic Algorithms

CS 1571 — Informed Search 9

q 1 Hill Climbing (or Descent)

Objective Function

State Space

CS 1571 — Informed Search 10

q 1 Hill Climbing Pseudo-code

*"Like climbing Everest in thick fog with amnesia"

function HILL-CLIMBING(problern) returns a state that is a local maximum
inputs: problem. a problem
local variables: current, a node
neighbor, a node

current <+ MAKE-NODE(INITIAL-STATE[problem.])

loop do
netghbor 4 a highest-valued successor of curnent
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current +— neighbor

*Always choose the next best successor state
*Stop when no improvement possible

CS 1571 — Informed Search 11

q 1 Hill Climbing Problems

Objective Function

State Space
CS 1571 — Informed Search 12

1||Hi11 Climbing Problems (cont.)
=

= Local Optimum
= Plateaus
= Shoulders

CS 1571 — Informed Search

13

1 1 n-Queens
—-|-|

W
3204

What happens if we move 3rd queen?

CS 1571 — Informed Search

14

q | Possible Improvements

I
Stochastic hill climbing

Choose at random from uphill moves
Probability of move could be influenced by steepness
First-choice hill climbing

Generate successors at random until one is better than
current.

Random-restart
Execute hill climbing several times, choose best result.

If p is probability of a search succeeding, then expected
number of restarts is 1/p.

CS 1571 — Informed Search 15

q | Simulated Annealing

I

Similar to stochastic hill climbing
Moves are selected at random
If a move is an improvement, accept
Otherwise, accept with probability less than 1.

Probability gets smaller as time passes and
by the amount of “"badness” of the move.

CS 1571 — Informed Search 16

q 1 Simulated Annealing

Objective Function

Now can also go down (‘bad’ move),
with gradually decreasing frequency

State Space

CS 1571 — Informed Search 17

q 1 Simulated Annealing

|
Developed originally for modeling physical
processes

temperature parameter T
If T is decreased slowly enough the best
configuration (state) is always reached
Applications

VLSI design, Airline scheduling

Limitation of pursuing one state
configuration

CS 1571 — Informed Search 18

1| Local Beam Search
S I

= Keep k states in memory instead of just one
= Generate successors of all k states
= If one is a goal, return the goal

= Otherwise, take k best successors and
repeat.

CS 1571 — Informed Search 19

1||Loca1 Beam Search

sov ssbe dov siv

CS 1571 — Informed Search 20

10

q | Local Beam Search
|
Initial k states may not be diverse enough
Could have clustered around a local max.
Improvement is stochastic beam search

Choose k states at random, with probability of
choice an increasing function of its value.

CS 1571 — Informed Search 21

q 1 Genetic Algorithms

|
Can we do better?

Assume we have two configurations with good
values that are quite different

Perhaps the combination of the two individual
configurations may lead to a configuration with
higher value

So grow a population of individual combinations

Like Beam Search due to multiple states, but
less local

CS 1571 — Informed Search 22

11

q 1 Genetic Algorithms

|
Variant of stochastic beam search

Successor states are generated by combining two
parent states

Hopefully improves diversity
Start with k states, the population

Each state, or /ndividual, represented as a string
over a finite alphabet (e.g. DNA)

Each state is rated by a fitness function
Measures the quality of a state in the population

Select parents for reproduction using the fitness
function

CS 1571 — Informed Search 23

q | Algorithm Idea

|
Create a population of random configurations

Create a new population through:

Biased selection of pairs of configurations from the
previous population (via fitness function)

Crossover (combination) of pairs
Mutation of resulting individuals

Evolve the population of multiple generation
cycles

Reproduction Process Example — in class

CS 1571 — Informed Search 24

12

q 1 Genetic Algorithms

100
— 011

00 10010
10 01100

Crossover in Action

|

Mutate

10000 ——— 10010

Roulette Wheel Selection

Taken from

CS 1571 — Informed Search

25

13

