
Comparing User Simulation Models For Dialog Strategy Learning

Hua Ai
University of Pittsburgh

Intelligent Systems Program
Pittsburgh PA, 15260, USA

hua@cs.pitt.edu

Joel R. Tetreault
University of Pittsburgh

LRDC
Pittsburgh PA, 15260, USA
tetreaul@pitt.edu

Diane J. Litman
University of Pittsburgh

Dept. of Computer Science
LRDC

Pittsburgh PA, 15260, USA
litman@cs.pitt.edu

Abstract

This paper explores what kind of user sim-
ulation model is suitable for developing
a training corpus for using Markov Deci-
sion Processes (MDPs) to automatically
learn dialog strategies. Our results sug-
gest that with sparse training data, a model
that aims to randomly explore more dialog
state spaces with certain constraints actu-
ally performs at the same or better than a
more complex model that simulates real-
istic user behaviors in a statistical way.

1 Introduction

Recently, user simulation has been used in the de-
velopment of spoken dialog systems. In contrast to
experiments with human subjects, which are usually
expensive and time consuming, user simulation gen-
erates a large corpus of user behaviors in a low-cost
and time-efficient manner. For example, user sim-
ulation has been used in evaluation of spoken dia-
log systems (López-Cózar et al., 2003) and to learn
dialog strategies (Scheffler, 2002). However, these
studies do not systematically evaluate how helpful a
user simulation is. (Schatzmann et al., 2005) pro-
pose a set of evaluation measures to assess the re-
alness of the simulated corpora (i.e. how similar
are the simulated behaviors and human behaviors).
Nevertheless, how realistic a simulated corpus needs
to be for different tasks is still an open question.

We hypothesize that for tasks like system eval-
uation, a more realistic simulated corpus is prefer-
able. Since the system strategies are evaluated and

adapted based on the analysis of these simulated dia-
log behaviors, we would expect that these behaviors
are what we are going to see in the test phase when
the systems interact with human users. However,
for automatically learning dialog strategies, it is not
clear how realistic versus how exploratory (Singh et
al., 2002) the training corpus should be. A train-
ing corpus needs to be exploratory with respect to
the chosen dialog system actions because if a cer-
tain action is never tried at certain states, we will
not know the value of taking that action in that state.
In (Singh et al., 2002), their system is designed to
randomly choose one from the allowed actions with
uniform probability in the training phase in order to
explore possible dialog state spaces. In contrast,we
use user simulation to generate exploratory training
data because in the tutoring system we work with,
reasonable tutor actions are largely restricted by stu-
dent performance. If certain student actions do not
appear, this system would not be able to explore a
state space randomly .

This paper investigates what kind of user simula-
tion is good for using Markov Decision Processes
(MDPs) to learn dialog strategies. In this study,
we compare three simulation models which differ in
their efforts on modeling the dialog behaviors in a
training corpus versus exploring a potentially larger
dialog space. In addition, we look into the impact of
different state space representations and different re-
ward functions on the choice of simulation models.

2 System and Corpus

Our system is a speech-enabled Intelligent Tutor-
ing System that helps students understand qualita-



tive physics questions. The dialog policy was deter-
ministic and hand-crafted in a finite state paradigm
(Ai et al., 2006). We collected 130 dialogs (1019
student utterances) with 26 human subjects. Cor-
rectness (correct(c), incorrect(ic)) is automatically
judged by the system1 and kept in the system’s logs.
Percent incorrectness (ic%) is also automatically
calculated and logged. Each student utterance was
manually annotated for certainty (certain, uncer-
tain, neutral, mixed) in a previous study2 based on
both lexical and prosodic information. In this study,
we use a two-way classification (certain(cert), not-
certain(ncert)), where we collapse uncertain, neu-
tral, and mixed to be ncert to balance our data. An
example of coded dialog between the tutor (T) and a
student (S) is given in Table 1.

3 Experimental Setup

3.1 Learning Task

Our current system can only respond to the cor-
rectness of a student’s utterances; the system thus
ignores other underlying information, for exam-
ple, certainty which is believed to provide use-
ful information for the tutor. In our corpus, the
strength of the tutor’s minimal feedback (defined be-
low) is in fact strongly correlated with the percent-
age of student certainty (chi-square test, p<0.01).
Strong Feedback (SF) is when the tutor clearly states
whether the student’s answer is correct or incor-
rect (i.e., “This is great!”); Weak Feedback (WF)
is when the tutor does not comment on the correct-
ness of a student’s answer or gives slightly negative
feedback such as “well”. Our goal is to learn how
to manipulate the strength of the tutor minimal feed-
back in order to maximize student’s overall certainty
in the entire dialog. We keep the other parts of the
tutor feedback (e.g. explanations, questions) so the
system’s original design of maximizing the percent-
age of student correct answers is utilized.

3.2 Simulation Models

All three models we describe below are trained from
the real corpus we collected. We simulate on the
word level because generating student’s dialog acts
alone does not provide sufficient information for

1Kappa of 0.79 is gained comparing to human judgements.
2Kappa of 0.68 is gained in a preliminary agreement study.

T1: Which law of motion would you use?
S1: Newton’s second law? [ic, ic%=1, ncert]
T2: Well... The best law to use is Newton’s

third law. Do you recall what it says?
S2: For every action there is an equal and

opposite reaction? [c, ic%=50%, ncert]

Table 1: Sample coded dialog excerpt.

our tutoring system to decide the next system’s ac-
tion. Thus, the output of the three models is a stu-
dent utterance along with the student certainty (cert,
ncert). Since it is hard to generate a natural lan-
guage utterance for each tutor’s question, we use the
student answers in the real corpus as the candidate
answers for the simulated students (Ai et al., 2006).
In addition, we simulate student certainty in a very
simple way: the simulation models output the cer-
tainty originally associated with that utterance.

Probabilistic Model (PM) is meant to capture re-
alistic student behavior in a probabilistic way. Given
a certain tutor question along with a tutor feedback,
it will first compute the probabilities of the four
types of student answers from the training corpus: c
and cert, c and ncert, ic and cert, and ic and ncert.
Then, following this distribution, the model selects
the type of student answers to output, and then it
picks an utterance that satisfies the correctness and
certainty constraints of the chosen answer type from
the candidate answer set and outputs that utterance.
We implement a back-off mechanism to count pos-
sible answers that do not appear in the real corpus.

Total Random Model (TRM) ignores what the
current question is or what feedback is given. It ran-
domly picks one utterance from all the utterances in
the entire candidate answer set. This model tries to
explore all the possible dialog states.

Restricted Random Model (RRM) differs from
the PM in that given a certain tutor question and a
tutor feedback, it chooses to give a c and cert, c and
ncert, ic and cert, or ic and ncert answer with equal
probability. This model is a compromise between
the exploration of the dialog state space and the re-
alness of generated user behaviors.

3.3 MDP Configuration

A MDP has four main components: states, actions,
a policy, and a reward function. In this study, the ac-
tions allowed in each dialog state are SF and WF;



the policy we are trying to learn is in every state
whether the tutor should give SF and WF in order
to maximize the percent certainty in the dialog.

Since different state space representations and re-
ward functions have a strong impact on the MDP
policy learning, we investigate different configura-
tions to avoid possible bias introduced by certain
configurations. We use two state space representa-
tions: SSR1 uses the correctness of current student
turn and percent incorrectness so far; and SSR2 adds
in the certainty of the current student turn on top of
SSR1. Two reward functions are investigated: in
RF1, we assign +100 to every dialog that has a per-
cent certainty higher than the median from the train-
ing corpus, and -100 to every dialog that has a per-
cent certainty below the median; in RF2, we assign
different rewards to every different dialog by multi-
plying the percent certainty in that dialog with 100.
Other MDP parameter settings are the same as de-
scribed in (Tetreault et al., 2006).

3.4 Methodology

We first let the three simulation models interact with
the original system to generate different training cor-
pora. Then, we learn three MDP policies in a fixed
configuration from the three training corpora sep-
arately. For each configuration, we run the sim-
ulation models until we get enough training data
such that the learned policies on that corpus do not
change anymore (40,000 dialogs are generated by
each model). After that, the learned new policies are
implemented into the original system respectively 3.
Finally, we use our most realistic model, the PM,
to interact with each new system 500 times to eval-
uate the new systems’ performances. We use two
evaluation measures. EM1 is the number of dialogs
that would be assigned +100 using the old median
split. EM2 is the average of percent certainty in ev-
ery single dialog from the newly generated corpus.
A policy is considered better if it can improve the
percentage of certainty more than other policies, or
has more dialogs that will be assigned +100. The
baseline for EM1 is 250, since half of the 500 di-
alogs would be assigned +100 using the old median

3For example, the policy learned from the training corpus
generated by the RRM with SSR1 and RF1 is: give SF when
the current student answer is ic and ic%>50%, otherwise give
WF.

split. The baseline for EM2 is 35.21%, which is
obtained by calculating the percent certainty in the
corpus generated by the 40,000 interactions between
the PM and the original system.

4 Results and Discussion

Table 2 summarizes our results. There are two
columns under each “state representation+reward
function” configuration, presenting the results using
the two evaluation approaches. EM1 measures ex-
actly what RF1 tries to optimize; while EM2 mea-
sures exactly what RF2 tries to optimize. However,
we show the results evaluated by both EM1 and
EM2 for all configurations since the two evaluation
measures have their own practical values and can
be deployed under different design requirements.
All results that significantly4 outperform the corre-
sponding baselines are marked with ∗.

When evaluating using EM1, the RRM signifi-
cantly4 outperforms the other two models in all con-
figurations (in bold in Table 2). Also, the PM per-
forms better (but not statistically significantly) than
the TRM. When evaluating on EM2, the RRM sig-
nificantly4 outperforms the other two when using
SSR1 and RF1 (in bold in Table 2). In all other
configurations, the three models do not differ signif-
icantly. It is not surprising that the RRM outper-
forms the PM in most of the cases even when we
test on the PM. (Schatzmann et al., 2005) also ob-
serve that a good model can still perform well when
tested on a poor model.

We suspect that the performance of the PM is
harmed by the data sparsity issue in the real cor-
pus that we trained the model on. Consider the case
of SSR1: 25.8% of the potentially possible dialog
states do not exist in the real corpus. Although we
implement a back-off mechanism, the PM will still
have much less chance to transition to the states that
are not observed in the real corpus. Thus, when we
learn the MDP policy from the corpus generated by
this model, the actions to take in these less-likely
states are not fully learned. In contrast, the RRM
transitions from one state to each of the next possible
states with equal probability, which compensates for
the data sparsity problem. We further examine the
results obtained using SSR1 and RF1 and evaluated

4Using 2-sided t-test with Bonferroni correction, p<0.05.



Model Name SSR1+RF1 SSR2+RF1 SSR1+RF2 SSR2+RF2
EM1 EM2 EM1 EM2 EM1 EM2 EM1 EM2

Probabilistic Model 222 36.30% 217 37.63% 197 40.78%∗ 197 40.01%∗
Total Random Model 192 36.30% 211 38.57% 188 40.21%∗ 179 40.21%∗

Restricted Random Model 390∗ 46.11%∗ 368∗ 37.27% 309 40.21%∗ 301 40.21%∗

Table 2: Evaluation of the new policies trained with the three simulation models

by EM1 to confirm our hypothesis. When looking
into the frequent states5, 70.1% of them are seen fre-
quently in the training corpus generated by the PM,
while 76.3% are seen frequently in the training cor-
pus generated by the RRM. A higher percentage in-
dicates the policy might be better trained with more
training instances. This explains why the RRM out-
performs the PM in this case.

While the TRM also tries to explore dialog state
space, only 65.2% of the frequent states in testing
phase are observed frequently in the training phase.
This is because the Total Random Model answers
90% of the questions incorrectly and often goes
deeply down the error-correction paths. It does ex-
plore some states that are at the end of the paths,
but since these are the infrequent states in the test
phase, exploring these states does not actually im-
prove the model’s performance much. On the other
hand, while the student correctness rate in the real
corpus is 60%, the RRM prevents itself from being
trapped in the less-likely states on incorrect answer
paths by keeping its correctness rate to be 50%.

Our results are preliminary but suggest interest-
ing points in building simulation models: 1. When
trained from a sparse data set, it may be better to
use a RRM than a more realistic PM or a more ex-
ploratory TRM; 2. State space representation may
not impact evaluation results as much as reward
functions and evaluation measures, since when us-
ing RF2 and evaluating with EM2, the differences
we see using RF1 or EM1 become less significant.

In our future work, we are going to further investi-
gate whether the trends shown in this paper general-
ize to on-line MDP policy learning. We also want to
explore other user simulations that are designed for
sparse training data (Henderson et al., 2005). More

5We define frequent states to be those that comprise at least
1% of the entire corpus. These frequent states add up to more
than 80% of the training/testing corpus. However, deciding the
threshold of the frequent states in training/testing is an open
question.

importantly, we are going to test the new policies
with the other simulations and human subjects to
validate the learning process.

Acknowledgements

NSF (0325054, 0328431) supports this research.
The authors wish to thank Tomas Singliar for his
valuable suggestions, Scott Silliman for his support
on building the simulation system, and the anony-
mous reviewers for their insightful comments.

References
H. Ai and D. Litman. 2006. Comparing Real-Real,

Simulated-Simulated, and Simulated-Real Spoken Di-
alogue Corpora. In Proc. AAAI Workshop on Statis-
tical and Empirical Approaches for SDS.

J. Henderson, O.Lemon, and K.Georgila. 2005. Hybrid
reinforcement/supervised learning for dialogue poli-
cies from COMMUNICATOR data. In Proc. IJCAI
workshop on Knowledge and Reasoning in Practical
Dialogue Systems.

R. López-Cózar, A. De la Torre, J. Segura, and A. Ru-
bio. 2003. Assessment of dialog systems by means of
a new simulation technique. Speech Communication
(40): 387-407.

K. Scheffler. 2002. Automatic Design of Spoken Dialog
Systems. Ph.D. diss., Cambridge University.

J. Schatzmann, K. Georgila, and S. Young. 2005. Quan-
titative Evaluation of User Simulation Techniques for
Spoken Dialog Systems. In Proc. of 6th SIGdial.

J. Schatzmann, M. N. Stuttle, K. Weilhammer and
S. Young. 2005. Effects of the User Model on
Simulation-based Learning of Dialogue Strategies. In
Proc. of ASRU05.

S. Singh, D. Litman, M. Kearns, and M. Walker. 2002.
Optimizing Dialog Managment with Reinforcement
Learning: Experiments with the NJFun System. Jour-
nal of Artificial Intelligence Research, (16):105-133.

J. Tetreault and D. Litman. 2006. Comparing the Utility
of State Features in Spoken Dialogue Using Reinforce-
ment Learning.. In Proc. NAACL06.


