## Proving RSA's correctness using Fermat's Little Theorem

Fermat's Little Theorem states that, if $p$ is a prime, then in the group $Z_{n}$, $a^{p-1} \equiv 1$. Stated using modulo:

$$
a^{p-1} \equiv 1 \quad(\bmod p)
$$

We aim to show that

$$
M^{e d} \equiv M \quad(\bmod n)
$$

where $n=p q$.
Note that since $e d \equiv 1(\bmod \phi(n)), M^{e d}=M^{k \phi(n)+1}$.
Since $\phi(n)=(p-1)(q-1)$, we know that $\phi(n)$ is a multiple of $p-1$. Thus, $k \phi(n)$ is also a multiple of $p-1$. Since $p$ is prime, and by Fermat's Little Theorem, we have the following:

$$
M^{k \phi(n)+1}=M^{1} \quad(\bmod p)
$$

By an identical argument, we have the same for $q$ :

$$
M^{k \phi(n)+1}=M^{1} \quad(\bmod q)
$$

Thus, we know that $p \mid\left(M^{k \phi(n)+1}-M\right)$ and $q \mid\left(M^{k \phi(n)+1}-M\right)$.
Since $p$ and $q$ are both primes and are not equal, they are relatively prime. Note that, for $a$ and $b$ relatively prime, $a|c \wedge b| c \Longrightarrow a b \mid c$. Therefore,

$$
p q \mid\left(M^{k \phi(n)+1}-M\right)
$$

which leads to $M^{k \phi(n)+1}-M^{1} \equiv 0(\bmod p q)$, and thus to our end goal:

$$
M^{e d} \equiv M^{k \phi(n)+1} \equiv M \quad(\bmod n)
$$

