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Greedy Algorithms and
Dynamic Programming



● What is the minimum number of coins needed to make up a 

given value k?

● If you were working as a cashier, what would your algorithm 

be to solve this problem?

Consider the change making problem



● At each step, the algorithm makes the choice that seems to 

be best at the moment

● Have we seen greedy algorithms already this term?

This is a greedy algorithm



● Nearest neighbor doesn't solve travelling salesman

○ Does not produce an optimal result

● Does our change making algorithm solve the change making 

problem?

○ For US currency…

○ But what about a currency composed of pennies (1 cent), 

thrickels (3 cents), and fourters (4 cents)?

■ What denominations would it pick for k=6?

… But wait … 



● For greedy algorithms to produce optimal results, problems 

must have two properties:

○ Optimal substructure

■ Optimal solution to a subproblem leads to an optimal 

solution to the overall problem

○ The greedy choice property

■ Globally optimal solutions can be assembled from locally 

optimal choices

● Why is optimal substructure not enough?

So what changed about the problem?



● Consider computing the Fibonacci sequence:

int fib(n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else {

return fib(n - 1) + fib(n - 2);

}

}

● What does the call tree for n = 5 look like?

Finding all subproblems solutions can be inefficient
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How do we improve?
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int[] F = new int[n+1];

F[0] = 0; 

F[1] = 1;

for(int i = 2; i <= n; i++) F[i] = -1;

int dp_fib(x) {

if (F[x] == -1)

F[x] = dp_fib(x-1) + dp_fib(x-2);

return F[x];

}

Memoization



int bottomup_fib(n) {

if (n == 0)

return 0;

int[] F = new int[n+1];

F[0] = 0; 

F[1] = 1;

for(int i = 2; i <= n; i++) {

F[i] = F[i-1] + F[i-2];

}

return F[n];

}

Note that we can also do this bottom-up

Can we improve this 
bottom-up approach?



● Problems with two properties:

○ Optimal substructure

■ Optimal solution to a subproblem leads to an optimal 

solution to the overall problem

○ Overlapping subproblems

■ Naively, we would need to recompute the same 

subproblem multiple times

 

● How do these properties contrast with those for greedy 

algorithms?

Where can we apply dynamic programming?



● Given a knapsack that can hold a weight limit L, and a set of 

n types of items that each has a weight (wi) and value (vi), 

what is the maximum value we can fit in the knapsack if we 

assume we have unbounded copies of each item?

K[0] = 0

for (l = 1; l <= L; l++)

K[l] = max (v
i
 + K[l - w

i
])

The unbounded knapsack problem

w
i
<=l



● What if we have a finite set of items, with each item having a 

weight and value?

○ Two choices for each item:

■ Goes in the knapsack

■ Left out of the knapsack

The 0/1 knapsack problem



int knapSack(int[] wt, int[] val, int L, int n) {

if (n == 0 || L == 0):

    return 0;

if (wt[n-1] > L):

    return knapSack(wt, val, L, n-1);

else:

return max( val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),

knapSack(wt, val, L, n-1)

);

}

The 0/1 knapsack problem



int knapSack(int wt[], int val[], int L, int n) {

int[][] K = new int[n+1][L+1];

for (int i = 0; i <= n; i++) {

for (int l = 0; l <= L; l++) {

if (i==0 || l==0) K[i][l] = 0;

else if (wt[i-1] > l) K[i][l] = K[i-1][l];

else

K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]],

K[i-1][l]);

}

}

return K[n][L];

}

The 0/1 knapsack dynamic programming solution



The 0/1 knapsack dynamic programming example
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wt  = [ 2, 3, 4, 5 ]
val = [ 3, 4, 5, 6 ]



The 0/1 knapsack dynamic programming example
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The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0
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wt  = [ 2, 3, 4, 5 ]
val = [ 3, 4, 5, 6 ]



The 0/1 knapsack dynamic programming example
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wt  = [ 2, 3, 4, 5 ]
val = [ 3, 4, 5, 6 ]



The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3
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3 0 0 3 4 5 7
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wt  = [ 2, 3, 4, 5 ]
val = [ 3, 4, 5, 6 ]



int knapSack(int wt[], int val[], int L, int n) {

int[][] K = new int[n+1][L+1];

for (int i = 0; i <= n; i++) {

for (int l = 0; l <= L; l++) {

if (i==0 || l==0) K[i][l] = 0;

else if (wt[i-1] > l) K[i][l] = K[i-1][l];

else

K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]],

K[i-1][l]);

}

}

return K[n][L];

}

The 0/1 knapsack dynamic programming solution

How can we also return the 
items stored in the knapsack?



● Questions to ask in finding dynamic programming solutions:

○ Does the problem have optimal substructure?

■ Can solve the problem by splitting it into smaller 

problems?

■ Can you identify subproblems that build up to a solution?

○ Does the problem have overlapping subproblems?

■ Where would you find yourself recomputing values?

● How can you save and reuse these values?

To review...



● Consider a currency with n different denominations of coins 

d1, d2, …, dn.  What is the minimum number of coins needed 

to make up a given value k?

The change-making problem


