CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Greedy Algorithms and Dynamic Programming

Consider the change making problem

- What is the minimum number of coins needed to make up a given value k ?
- If you were working as a cashier, what would your algorithm be to solve this problem?

This is a greedy algorithm

- At each step, the algorithm makes the choice that seems to be best at the moment
- Have we seen greedy algorithms already this term?

... But wait ...

- Nearest neighbor doesn't solve travelling salesman
- Does not produce an optimal result
- Does our change making algorithm solve the change making problem?
- For US currency...
- But what about a currency composed of pennies (1 cent), thrickels (3 cents), and fourters (4 cents)?
- What denominations would it pick for $\mathrm{k}=6$?

So what changed about the problem?

- For greedy algorithms to produce optimal results, problems must have two properties:
- Optimal substructure
- Optimal solution to a subproblem leads to an optimal solution to the overall problem
- The greedy choice property
- Globally optimal solutions can be assembled from locally optimal choices
- Why is optimal substructure not enough?

Finding all subproblems solutions can be inefficient

- Consider computing the Fibonacci sequence:

```
int fib(n) {
    if (n == 0) return 0;
    else if (n == 1) return 1;
    else {
        return fib(n - 1) + fib(n - 2);
    }
}
```

- What does the call tree for $\mathrm{n}=5$ look like?

fib(5)

How do we improve?

Memoization

```
int[] F = new int[n+1];
F[0] = 0;
F[1] = 1;
for(int i = 2; i <= n; i++) F[i] = -1;
int dp_fib(x) {
    if (F[x] == -1)
        F[x] = dp_fib(x-1) + dp_fib(x-2);
    return F[x];
}
```


Note that we can also do this bottom-up

```
int bottomup_fib(n) {
if (n == 0)
return 0;
int[] F = new int[n+1];
F[0] = 0;
F[1] = 1;
for(int i = 2; i <= n; i++) {
    F[i] = F[i-1] + F[i-2];
}
return F[n];
}
```

Can we improve this bottom-up approach?

Where can we apply dynamic programming?

- Problems with two properties:
- Optimal substructure
- Optimal solution to a subproblem leads to an optimal solution to the overall problem
- Overlapping subproblems
- Naively, we would need to recompute the same subproblem multiple times
- How do these properties contrast with those for greedy algorithms?

The unbounded knapsack problem

- Given a knapsack that can hold a weight limit L , and a set of n types of items that each has a weight (w_{i}) and value (v_{i}), what is the maximum value we can fit in the knapsack if we assume we have unbounded copies of each item?

$$
\begin{aligned}
& \mathrm{K}[0]=0 \\
& \text { for }(1=1 ; 1<=L ; l++) \\
& \qquad K[l]=\max _{w_{i}<=1}\left(v_{i}+K\left[l-w_{i}\right]\right)
\end{aligned}
$$

The 0/1 knapsack problem

- What if we have a finite set of items, with each item having a weight and value?
- Two choices for each item:
- Goes in the knapsack
- Left out of the knapsack

The 0/1 knapsack problem

int knapSack(int[] wt, int[] val, int L, int n) \{
if ($\mathrm{n}=0$ || $\mathrm{L}==0$):
return 0;
if (wt[n-1] > L):
return knapSack(wt, val, L, $\mathrm{n}-1$);
else:

$$
\begin{aligned}
& \text { return } \max (\operatorname{val}[n-1]+\operatorname{knapSack}(w t, \text { val, } L-w t[n-1], n-1) \text {, } \\
& \quad \text { knapSack(wt, val, } L, n-1) \\
& \quad \text {); }
\end{aligned}
$$

The 0/1 knapsack dynamic programming solution

```
int knapSack(int wt[], int val[], int L, int n) {
int[][] K = new int[n+1][L+1];
for (int i = 0; i <= n; i++) {
    for (int l = 0; l <= L; l++) {
        if (i==0 || l==0) K[i][l] = 0;
        else if (wt[i-1] > l) K[i][l] = K[i-1][l];
        else
        K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]],
        K[i-1][l]);
    }
}
return K[n][L];
}
```


The 0/1 knapsack dynamic programming example

$$
\begin{aligned}
& w t=[2,3,4,5] \\
& \operatorname{val}=[3,4,5,6]
\end{aligned}
$$

iVI	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

The 0/1 knapsack dynamic programming example

$$
\begin{aligned}
& \mathrm{wt}=[2,3,4,5] \\
& \mathrm{val}=[3,4,5,6]
\end{aligned}
$$

iVI	0	1	2	3	4	5
0	0	0	0	0	0	0
1						
2						
3						
4						

The 0/1 knapsack dynamic programming example

$$
\begin{aligned}
& w t=[2,3,4,5] \\
& \operatorname{val}=[3,4,5,6]
\end{aligned}
$$

iNI	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2						
3						
4						

The 0/1 knapsack dynamic programming example

$$
\begin{aligned}
& w t=[2,3,4,5] \\
& \operatorname{val}=[3,4,5,6]
\end{aligned}
$$

iNI	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3						
4						

The 0/1 knapsack dynamic programming example

$$
\begin{aligned}
& w t=[2,3,4,5] \\
& \operatorname{val}=[3,4,5,6]
\end{aligned}
$$

iNI	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	0	3	3	3	3
2	0	0	3	4	4	7
3	0	0	3	4	5	7
4						

The $0 / 1$ knapsack dynamic programming solution

int knapSack(int wt[], int val[], int L, int n) \{

$$
\begin{aligned}
& \text { int[][] K = new int }[n+1][L+1] ; \\
& \text { for (int } i=0 ; i<=n ; i++)\{ \\
& \text { for (int } 1=0 ; 1<=L ; l++)\{ \\
& \text { if }(i==0| | l==0) K[i][l]=0 ; \\
& \text { else if }(w t[i-1]>l) K[i][l]=K[i-1][l] ; \\
& \text { else } \\
& \quad K[i][l]=\max (\operatorname{val}[i-1]+K[i-1][l-w t[i-1]], \\
& \quad K[i-1][l]) ;
\end{aligned}
$$

\}
How can we also return the
\} items stored in the knapsack?
return $\mathrm{K}[\mathrm{n}][\mathrm{L}]$;

To review...

- Questions to ask in finding dynamic programming solutions:
- Does the problem have optimal substructure?
- Can solve the problem by splitting it into smaller problems?
- Can you identify subproblems that build up to a solution?
- Does the problem have overlapping subproblems?
- Where would you find yourself recomputing values?
- How can you save and reuse these values?

The change-making problem

- Consider a currency with n different denominations of coins $d_{1}, d_{2}, \ldots, d_{n}$. What is the minimum number of coins needed to make up a given value k ?

