
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Greedy Algorithms and
Dynamic Programming

● What is the minimum number of coins needed to make up a

given value k?

● If you were working as a cashier, what would your algorithm

be to solve this problem?

Consider the change making problem

● At each step, the algorithm makes the choice that seems to

be best at the moment

● Have we seen greedy algorithms already this term?

This is a greedy algorithm

● Nearest neighbor doesn't solve travelling salesman

○ Does not produce an optimal result

● Does our change making algorithm solve the change making

problem?

○ For US currency…

○ But what about a currency composed of pennies (1 cent),

thrickels (3 cents), and fourters (4 cents)?

■ What denominations would it pick for k=6?

… But wait …

● For greedy algorithms to produce optimal results, problems

must have two properties:

○ Optimal substructure

■ Optimal solution to a subproblem leads to an optimal

solution to the overall problem

○ The greedy choice property

■ Globally optimal solutions can be assembled from locally

optimal choices

● Why is optimal substructure not enough?

So what changed about the problem?

● Consider computing the Fibonacci sequence:

int fib(n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else {

return fib(n - 1) + fib(n - 2);

}

}

● What does the call tree for n = 5 look like?

Finding all subproblems solutions can be inefficient

fib(5)

fib(5)

fib(3) fib(2)

fib(4) fib(3)

fib(2) fib(1) fib(1) fib(0)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

fib(3) fib(2)

fib(4) fib(3)

fib(2) fib(1) fib(1) fib(0)

fib(2) fib(1)

fib(1) fib(0)

fib(1) fib(0)

How do we improve?

fib(5)

fib(3)

fib(4) fib(3)

fib(2)

fib(2) fib(2)

fib(1) fib(1)

fib(1)

fib(1)fib(0) fib(0)

fib(1) fib(0)

int[] F = new int[n+1];

F[0] = 0;

F[1] = 1;

for(int i = 2; i <= n; i++) F[i] = -1;

int dp_fib(x) {

if (F[x] == -1)

F[x] = dp_fib(x-1) + dp_fib(x-2);

return F[x];

}

Memoization

int bottomup_fib(n) {

if (n == 0)

return 0;

int[] F = new int[n+1];

F[0] = 0;

F[1] = 1;

for(int i = 2; i <= n; i++) {

F[i] = F[i-1] + F[i-2];

}

return F[n];

}

Note that we can also do this bottom-up

Can we improve this
bottom-up approach?

● Problems with two properties:

○ Optimal substructure

■ Optimal solution to a subproblem leads to an optimal

solution to the overall problem

○ Overlapping subproblems

■ Naively, we would need to recompute the same

subproblem multiple times

● How do these properties contrast with those for greedy

algorithms?

Where can we apply dynamic programming?

● Given a knapsack that can hold a weight limit L, and a set of

n types of items that each has a weight (wi) and value (vi),

what is the maximum value we can fit in the knapsack if we

assume we have unbounded copies of each item?

K[0] = 0

for (l = 1; l <= L; l++)

K[l] = max (v
i
 + K[l - w

i
])

The unbounded knapsack problem

w
i
<=l

● What if we have a finite set of items, with each item having a

weight and value?

○ Two choices for each item:

■ Goes in the knapsack

■ Left out of the knapsack

The 0/1 knapsack problem

int knapSack(int[] wt, int[] val, int L, int n) {

if (n == 0 || L == 0):

 return 0;

if (wt[n-1] > L):

 return knapSack(wt, val, L, n-1);

else:

return max(val[n-1] + knapSack(wt, val, L-wt[n-1], n-1),

knapSack(wt, val, L, n-1)

);

}

The 0/1 knapsack problem

int knapSack(int wt[], int val[], int L, int n) {

int[][] K = new int[n+1][L+1];

for (int i = 0; i <= n; i++) {

for (int l = 0; l <= L; l++) {

if (i==0 || l==0) K[i][l] = 0;

else if (wt[i-1] > l) K[i][l] = K[i-1][l];

else

K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]],

K[i-1][l]);

}

}

return K[n][L];

}

The 0/1 knapsack dynamic programming solution

The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1

2

3

4

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2

3

4

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3

4

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

The 0/1 knapsack dynamic programming example

i\l 0 1 2 3 4 5

0 0 0 0 0 0 0

1 0 0 3 3 3 3

2 0 0 3 4 4 7

3 0 0 3 4 5 7

4 0 0 3 4 5 7

wt = [2, 3, 4, 5]
val = [3, 4, 5, 6]

int knapSack(int wt[], int val[], int L, int n) {

int[][] K = new int[n+1][L+1];

for (int i = 0; i <= n; i++) {

for (int l = 0; l <= L; l++) {

if (i==0 || l==0) K[i][l] = 0;

else if (wt[i-1] > l) K[i][l] = K[i-1][l];

else

K[i][l] = max(val[i-1] + K[i-1][l-wt[i-1]],

K[i-1][l]);

}

}

return K[n][L];

}

The 0/1 knapsack dynamic programming solution

How can we also return the
items stored in the knapsack?

● Questions to ask in finding dynamic programming solutions:

○ Does the problem have optimal substructure?

■ Can solve the problem by splitting it into smaller

problems?

■ Can you identify subproblems that build up to a solution?

○ Does the problem have overlapping subproblems?

■ Where would you find yourself recomputing values?

● How can you save and reuse these values?

To review...

● Consider a currency with n different denominations of coins

d1, d2, …, dn. What is the minimum number of coins needed

to make up a given value k?

The change-making problem

