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The RSA Cryptosystem



● Mentioning some of the shortcomings with symmetric key 
encryption

● Today we’ll be talking about public-key encryption
○ Each user has their own pair of keys

■ A public key that can be revealed to anyone
■ A private key that only they should know

● Eases key distribution problems
○ Public key can simply be published/advertised

■ Posted repositories of public keys
■ Added to an email signature

○ Each user is responsible only for their own keypair

We ended lecture last time…



● For symmetric ciphers (e.g., AES), keys are just numbers of a 

given bitlength (e.g., 128, 256)

● In public key crypto, we have keypairs

○ In RSA:

■ Public key is two numbers, which we will call n and e

■ Private key is a single number we will call d

● The length of n in bits is the key length

○ i.e., 2048 bit RSA keys will have a 2048 bit n value

Cryptographic keys



RSA



● What are public/private keys?

● How messages encrypted?

● How are messages decrypted?

● How are keys generated?

● Why is it secure?

RSA Cryptosystem



Say Alice wants to send a message to Bob

1. Looks up Bob’s public key

2. Convert the message into an integer:  m

3. Compute the ciphertext c as:

○ c = me (mod n)

4. Send c to Bob

Encryption



Bob can simply:

1. Compute m as:

○ m = cd (mod n)

2. Convert m into Alice’s message

Decryption



1. Choose two prime number p and q 

2. Compute n = p * q

3. Compute φ(n)

○ φ(n) = φ(p) * φ(q) = (p - 1) * (q - 1)

4. Choose e such that 

○ 1 < e < φ(n)

○ GCD(e, φ(n)) = 1

■ I.e., e and φ(n) are co-prime

5. Determine d as d = e-1 mod(φ(n))

n, e, and d need to be carefully generated



● Here, we mean φ to be Euler’s totient

● φ(n) is a count of the integers < n that are co-prime to n

○ I.e., how many k are there such that:

■ 1 <= k <= n AND GCD(n, k) = 1

● p and q are prime..

○ Hence, φ(p) = p - 1 and φ(q) = q -1

● Further, φ is multiplicative

○ Since p and q are prime, they are co-prime, so

■ φ(p) * φ(q) = φ(p * q) = φ(n)

● I won’t detail the proof here...

What’s φ?



● d = e-1 mod(φ(n))

○ d = (1/e) mod(φ(n))

○ e * d = 1 (mod φ(n))

● Now, this can be equivalently stated as e * d = z * φ(n) + 1

○ For some z

● Can further restate this as:  e * d - z * φ(n)  = 1

● Or similarly:  1 = φ(n) * (-z) + e * d

● How can we solve this?

○ Hint: recall that we know GCD(φ(n), e) = 1

OK, now what about multiplicative inverses mod φ(n)?



● GCD(a, b) = i = ax + by

● Let:

○ a = φ(n) 

○ b = e

○ x = -z

○ y = d

○ i = 1

● GCD(φ(n), e) = 1 = φ(n) * (-z) + e * d

● We can compute d in linear time!

Use extended Euclidean algorithm!



● Remember:

○ p and q must be prime

○ n = p * q

○ φ(n) = (p - 1) * (q - 1)

○ Choose e such that 

■ 1 < e < φ(n) and GCD(e, φ(n)) = 1

○ Solve XGCD(φ(n), e) = 1 = φ(n) * (-z) + e * d

RSA keypair example



● Feel free to look up the proof using Fermat’s little theorem

○ Knowing this proof is NOT required for the course

○ Knowing how to generate RSA keys and encrypt/decrypt IS

● For this course, we’ll settle with our example showing that it 

does work

OK, but how does med = m mod n?



● 4 avenues of attack on the math of RSA were identified in 

the original paper:

○ Factoring n to find p and q

○ Determining φ(n) without factoring n

○ Determining d without factoring n or learning φ(n)

○ Learning to take eth roots modulo n

Why is RSA secure?



● This is hard

○ A 768 bit RSA key was factored one time using the best 

currently known algorithm

■ Took 1500 CPU years

● 2 years of real time on hundreds of computers

■ Hence, large keys are safe

● 2048 bit keys are a pretty good bet for now

Factoring n



● Would allow us to easily compute d because ed = 1 mod φ
(n)

● Note:
○ φ(n) = n - p - q + 1

■ φ(n) = n - (p + q) + 1
■ (p + q) = n + 1- φ(n)

○ (p + q) - (p - q) = 2q
○ Now we just need (p - q)...

■ (p - q)2 = p2 - 2pq + q2

■ (p - q)2 = p2 + 2pq + q2 - 4pq
■ (p - q)2 = (p + q)2 - 4pq
■ (p - q)2 = (p + q)2 - 4n
■ (p - q) = √((p + q)2 - 4n)

● If we can figure out φ(n) efficiently, we could factor n 
efficiently!

What about determining φ(n) without factoring n?



● If we know, d, we can get a multiple of φ(n)

○ ed = 1 mod φ(n)

○ ed = kφ(n) + 1

■ For some k

○ ed - 1 = kφ(n)

● It has been shown that n can be efficiently factored using 

any multiple of φ(n)

○ Hence, this would provide another efficient solution to 

factoring!

Determining d without factoring n or learning φ(n)?



● Conjecture was made in 1978 that breaking RSA would yield 

an efficient factoring algorithm

○ To date, it has been not been proven or disproven

Learning to take eth roots modulo n



● Odds are that breaking RSA efficiently implies that factoring 

can be done efficiently.

● Since factoring is hard, RSA is probably safe to use.

This all leads to the following conclusion



● Encryption/decryption:

○ How can we perform efficient exponentiations?

● Key generation:

○ We can do multiplication, XGCD for large integers

○ What about finding large prime numbers?

Implementation concerns



● How can we improve runtime for RSA exponentiations?

○ Don’t actually need xy

■ Just need (xy mod n)

Exponentiation for RSA

res = 1

foreach bit in y:

res = res2

if bit == 1:

res = res * x

res = 1

foreach bit in y:

res = (res2 mod n)

if bit == 1:

res = (res * x mod n)

Does this solve our problems?



● If only we could have the speed of symmetric encryption 
without the key distribution woes!
○ What if we transmitted symmetric crypto keys with RSA?

■ RSA Envelopes!

● Going back to Alice and Bob
○ Alice generates a random AES key
○ Alice encrypts her message using AES with this key
○ Alice encrypts the key using Bob’s RSA public key
○ Alice sends the encrypted message and encrypted key to Bob
○ Bob decrypts the AES key using his RSA private key
○ Bob decrypts the message using the AES key

Still slower (generally) than symmetric encryption



● Try all possible factors

○ 1 .. sqrt(x)

■ aka 1 .. sqrt(2|n|)

● For a total of 2(|n|/2) factor checks

● A factor check should take about the same amount of time 

as multiplication

○ |n|2

● So our runtime is Θ(2(|n|/2)|n|2)

Prime testing option 1:  BRUTE FORCE



Option 2:  A probabilistic approach

● Need a  method test : Z×Z → {T, F}

○ If test(x, a) = F, x is composite based on the witness a

○ If test(x, a) = T, x is probably prime based on the witness a 

● To test a number x for primality:

○ Randomly choose a witness a

■ if test(x, a) = F, x is composite

■ if test(x, a) = T, loop

● Possible implementations of test(x, a):

○ Miller-Rabin, Fermat’s, Solovay–Strassen

often probability ≈ 1/2

k repetitions leads to 
probability that x is 
composite ≈ 1/2k



● Notice that encrypting and decrypting are inverses

○ med = mde (mod n)

● We can “decrypt” the message first with a private key

● Then recover the message by “encrypting” with a public key

● Note that anyone can recover the message

○ However, they know the message must have come from the 

owner of the private key

■ Using RSA this way creates a digital signature

Another fun use of RSA...



● We encrypted symmetric crypto keys before
● For digital signatures, instead of signing the whole message, 

we simply sign a hash of the message!

How do we avoid the downsides of RSA here?

hash algorithm

signature 
algorithm



● If Bob signs a hash of the message “I’ll see you at 7”
 

● It could appear that Bob signed any message whose hash 

collides with “I’ll see you at 7”...

○ If h(“I’ll see you at 7”) == h(“I’ll see you after I rob the 

bank”), Bob could be in a lot of trouble

 

● An attack like this helped the Flame malware to spread

● This is also the reason Google is aiming to deprecate SHA-1

What about collisions?



What do you when a private key is compromised?

Public key isn’t perfect, however



NEVER IMPLEMENT YOUR OWN CRYPTO
Use a trusted and tested library.

Final note about crypto


