CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

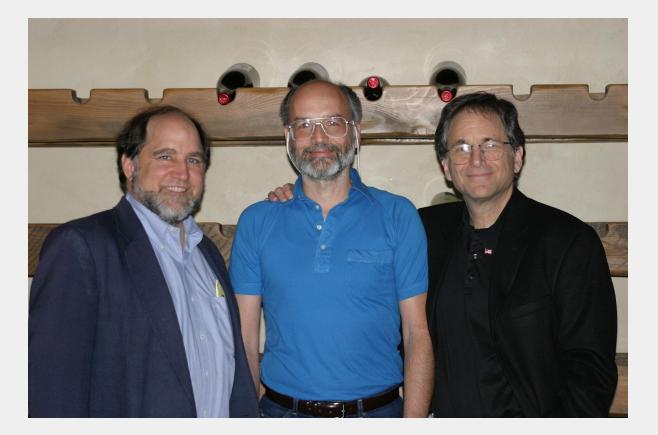
The RSA Cryptosystem

We ended lecture last time...

- Mentioning some of the shortcomings with symmetric key encryption
- Today we'll be talking about public-key encryption
 - Each user has their own pair of keys
 - A public key that can be revealed to anyone
 - A private key that only they should know
- Eases key distribution problems
 - Public key can simply be published/advertised
 - Posted repositories of public keys
 - Added to an email signature
 - Each user is responsible only for their own keypair

Cryptographic keys

- For symmetric ciphers (e.g., AES), keys are just numbers of a given bitlength (e.g., 128, 256)
- In public key crypto, we have *keypairs*
 - In RSA:
 - Public key is two numbers, which we will call n and e
 - Private key is a single number we will call d
- The length of n in bits is the key length
 - o i.e., 2048 bit RSA keys will have a 2048 bit n value



RSA Cryptosystem

- What are public/private keys?
- How messages encrypted?
- How are messages decrypted?
- How are keys generated?
- Why is it secure?

Encryption

Say Alice wants to send a message to Bob

- 1. Looks up Bob's public key
- 2. Convert the message into an integer: m
- 3. Compute the ciphertext c as:
 - \circ c = m^e (mod n)
- 4. Send c to Bob

Decryption

Bob can simply:

- 1. Compute m as:
 - $m = c^d \pmod{n}$
- 2. Convert m into Alice's message

n, e, and d need to be carefully generated

- 1. Choose two prime number **p** and **q**
- 2. Compute n = p * q
- 3. Compute φ(n)
 - φ(n) = φ(p) * φ(q) = (p − 1) * (q − 1)
- 4. Choose e such that
 - 1 < e < φ(n)
 - GCD(e, φ(n)) = 1
 - I.e., e and φ(n) are co-prime
- 5. Determine d as d = $e^{-1} \mod(\varphi(n))$

What's φ?

- Here, we mean φ to be Euler's totient
- $\varphi(n)$ is a count of the integers < n that are co-prime to n
 - I.e., how many k are there such that:

1 <= k <= n AND GCD(n, k) = 1</p>

- p and q are prime..
 - Hence, $\varphi(p) = p 1$ and $\varphi(q) = q 1$
- Further, φ is multiplicative
 - Since p and q are prime, they are co-prime, so
 - $\phi(p) \star \phi(q) = \phi(p \star q) = \phi(n)$
 - I won't detail the proof here...

- $d = e^{-1} \mod(\phi(n))$
 - $d = (1/e) \mod(\varphi(n))$
 - $e * d = 1 \pmod{\phi(n)}$
- Now, *this* can be equivalently stated as $e * d = z * \varphi(n) + 1$
 - For some z
- Can further restate this as: $e * d z * \phi(n) = 1$
- Or similarly: $1 = \varphi(n) * (-z) + e * d$
- How can we solve this?
 - Hint: recall that we know $GCD(\varphi(n), e) = 1$

Use extended Euclidean algorithm!

- GCD(a, b) = i = ax + by
- Let:
 - $a = \phi(n)$
 - **b** = e
 - **X = -Z**
 - y = d
 - i = 1
- GCD($\phi(n)$, e) = 1 = $\phi(n)$ * (-z) + e * d
- We can compute d in linear time!

RSA keypair example

• Remember:

- p and q must be prime
- **n = p * q**
- φ(n) = (p − 1) * (q − 1)
- Choose e such that
 - $1 < e < \varphi(n)$ and GCD(e, $\varphi(n)$) = 1
- Solve XGCD($\phi(n)$, e) = 1 = $\phi(n) * (-z) + e * d$

OK, but how does m^{ed} = m mod n?

- Feel free to look up the proof using Fermat's little theorem
 - Knowing this proof is **NOT** required for the course
 - Knowing how to generate RSA keys and encrypt/decrypt **IS**
- For this course, we'll settle with our example showing that it *does* work

Why is RSA secure?

• 4 avenues of attack on the math of RSA were identified in

the original paper:

- Factoring n to find p and q
- Determining $\varphi(n)$ without factoring n
- Determining d without factoring n or learning $\varphi(n)$
- Learning to take eth roots modulo n

Factoring n

- This is *hard*
 - $\circ~$ A 768 bit RSA key was factored one time using the best

currently known algorithm

- Took 1500 CPU years
 - 2 years of real time on hundreds of computers
- Hence, large keys are safe
 - 2048 bit keys are a pretty good bet for now

What about determining $\varphi(n)$ without factoring n?

- Would allow us to easily compute d because ed = 1 mod φ (n)
- Note:

$$\circ \phi(n) = n - p - q + 1$$

•
$$(p + q) - (p - q) = 2q$$

•
$$(p - q)^2 = p^2 + 2pq + q^2 - 4pq$$

•
$$(p - q)^2 = (p + q)^2 - 4n$$

■
$$(p - q) = \sqrt{((p + q)^2 - 4n)}$$

 If we can figure out φ(n) efficiently, we could factor n efficiently!

Determining d without factoring n or learning $\varphi(n)$?

- If we know, d, we can get a multiple of $\varphi(n)$
 - ed = 1 mod $\varphi(n)$
 - $ed = k\phi(n) + 1$
 - For some k
 - ed 1 = $k\phi(n)$
- It has been shown that n can be efficiently factored using any multiple of $\varphi(n)$
 - Hence, this would provide another efficient solution to factoring!

Learning to take eth roots modulo n

- Conjecture was made in 1978 that breaking RSA would yield an efficient factoring algorithm
 - To date, it has been not been proven or disproven

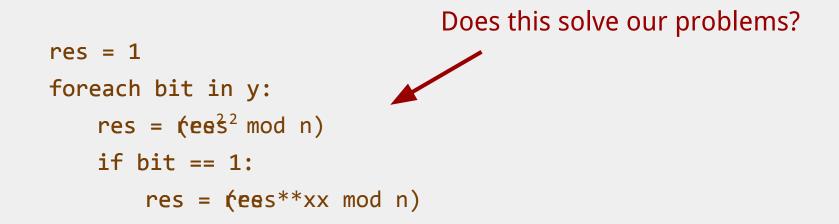
This all leads to the following conclusion

- Odds are that breaking RSA efficiently implies that factoring can be done efficiently.
- Since factoring is hard, RSA is probably safe to use.

Implementation concerns

- Encryption/decryption:
 - How can we perform efficient exponentiations?
- Key generation:
 - We can do multiplication, XGCD for large integers
 - What about finding large prime numbers?

Exponentiation for RSA



- How can we improve runtime for RSA exponentiations?
 - \circ Don't actually need x^y
 - Just need (x^y mod n)

Still slower (generally) than symmetric encryption

- If only we could have the speed of symmetric encryption without the key distribution woes!
 - What if we transmitted symmetric crypto keys with RSA?
 - RSA Envelopes!
- Going back to Alice and Bob
 - Alice generates a random AES key
 - Alice encrypts her message using AES with this key
 - Alice encrypts the key using Bob's RSA public key
 - Alice sends the encrypted message and encrypted key to Bob
 - Bob decrypts the AES key using his RSA private key
 - Bob decrypts the message using the AES key

Prime testing option 1: BRUTE FORCE

- Try all possible factors
 - 1 .. sqrt(x)
 - aka 1 .. sqrt(2^{|n|})
 - For a total of $2^{(|n|/2)}$ factor checks
- A factor check should take about the same amount of time
 - as multiplication

○ **|n**|²

• So our runtime is $\Theta(2^{(|n|/2)}|n|^2)$

Option 2: A probabilistic approach

- Need a method test : $Z \times Z \rightarrow \{T, F\}$
 - If test(x, a) = F, x is composite based on the witness a
 - If test(x, a) = T, x is probably prime based on the witness a
- To test a number x for primality:
 - Randomly choose a witness a ofter
 - if test(x, a) = F, x is composite
 - if test(x, a) = T, loop

- often probability $\approx 1/2$
- k repetitions leads to probability that x is composite $\approx 1/2^k$
- Possible implementations of test(x, a):
 - Miller-Rabin, Fermat's, Solovay–Strassen

Another fun use of RSA...

- Notice that encrypting and decrypting are inverses
 - $m^{ed} = m^{de} \pmod{n}$
- We can "decrypt" the message first with a private key
- Then recover the message by "encrypting" with a public key
- Note that anyone can recover the message
 - However, they know the message *must* have come from the owner of the private key
 - Using RSA this way creates a digital signature

How do we avoid the downsides of RSA here?

- We encrypted symmetric crypto keys before
- For digital signatures, instead of signing the whole message, we simply sign a hash of the message!

hash algorithm	Certificate Viewer: www.google.com	^	
	General Details		
	Certificate Hierarchy		
		*	
	👻 Google Internet Authority G2		
	www.google.com	*	
	Certificate Fields		
	Certificate Basic Constraints	*	signature algorithm
	Certification Authority Key ID		
	Certificate Policies		
	CRL Distribution Points		
	Certificate Signature Algorithm		
	Certificate Signature Value		
	- Fingerprints		
	SHA-256 Fingerprint		
	SHA-1 Fingerprint	~	
	Field Malue		algorithm
	PKCS #1 SHA-1 With RSA Encryption		
	3	Export	

What about collisions?

- If Bob signs a hash of the message "I'll see you at 7"
- It could appear that Bob signed any message whose hash collides with "I'll see you at 7"...
 - If h("I'll see you at 7") == h("I'll see you after I rob the bank"), Bob could be in a lot of trouble
- An attack like this helped the Flame malware to spread
- This is also the reason Google is aiming to deprecate SHA-1

What do you when a private key is compromised?

Final note about crypto

NEVER IMPLEMENT YOUR OWN CRYPTO

Use a trusted and tested library.