CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

More Math

Exponentiation

• Can easily compute with a simple algorithm:

```
ans = 1
for i = 1 .. y:
ans = ans * x
```

- Runtime?
 - It's just a for loop with a single multiplication...

Just like with multiplication, let's consider large integers...

- Runtime = # of iterations * cost to multiply
- Cost to multiply was covered in the last lecture
- So how many iterations?
 - Single loop from 1 to y, so linear, right?
 - What is the size of our input?
 - n is the bitlength of y...
 - So, linear in the *value* of y...
 - But, increasing n by 1 doubles the number of iterations
 - Θ(2ⁿ)
 - Exponential in the *bitlength* of y

This is **RIDICULOUSLY BAD**

- Assuming 512 bit operands, 2⁵¹²:
 - 134078079299425970995740249982058461274793658205923
 933777235614437217640300735469768018742981669034276
 900318581864860508537538828119465699464336490060840
 96

■ = 1.3 * 10¹⁵⁴

- Assuming we can do mults in 1 cycle...
 - Which we *can't* as we learned last lecture
- And further that these operations are completely parallelizable
- 8 3GHz cores = 24,000,000,000 cycles/second
 - o (2⁵¹² / 240000000) / 3600 * 24 * 365 =
 - 1.77 * 10¹³⁶ years to compute

This is way too long to do exponentiations!

- So how do we do better?
- Let's try divide and conquer!
 - When y is even: $x^{y} = (x^{(y/2)})^{2}$
 - When y is odd: $x^y = x * (x^{(y/2)})^2$
- Analyzing a recursive approach:
 - Base case?
 - When y is 1, x^y is x
 - When y is 0, x^y is 1
 - Runtime?

Building another recurrence relation

•
$$x^y = (x^{(y/2)})^2 = x^{(y/2)} * x^{(y/2)}$$

• Similarly, $(x^{(y/2)})^2 * x = x^{(y/2)} * x^{(y/2)} * x$

- So, our recurrence relation is:
 - T(n) = T(n-1) + ?
 - How much work is done per call?
 - 1 (or 2) multiplication(s)
 - Examined runtime of multiplication last lecture
 - But how big are the operands in this case?

Determining work done per call

- Base case returns x
 - n bits
- Base case results are multiplied: x * x
 - n bit operands
 - Result size?
 - 2n
- These results are then multiplied: $x^2 * x^2$
 - 2n bit operands
 - Result size?
 - 4n bits
- x^(y/2) * x^(y/2)?
 - (y / 2) * n bit operands = $2^{(n-1)}$ * n bit operands
 - Result size? y * n bits = $2^n * n$ bits

Multiplication input size increases throughout

• Our recurrence relation looks like: • $T(n) = T(n-1) + \Theta((2^{(n-1)} * n)^2)$ squared from the used of the gradeschool algorithm

Runtime analysis

- Can we use the master theorem?
 - Nope, we don't have a b > 1
- OK, so let's reason it through ...
 - How many times can y be divided by 2 until a base case?
 - Ig(y)
 - Further, we know the max value of y
 - Relative to n, that is:
 - 2ⁿ
 - So, we have, at most $lg(y) = lg(2^n) = n$ recursions

- We need to do $\Theta((2^{(n-1)} * n)^2)$ work in just the root call!
 - Our runtime is dominated by multiplication time
 - Exponentiation quickly generates HUGE numbers
 - Time to multiply them quickly becomes impractical

Can we do better?

- We go "top-down" in the recursive approach
 - Start with n
 - Halve n until we reach the base case
 - Combine base case results
 - Continue combining until we arrive at the solution
- What about a "bottom-up" approach?
 - Start with our base case
 - Operate on it until we reach a solution

A bottom-up approach

• To calculate x^y

Bottom-up exponentiation example

- Consider x^y where x is 3 and y is 43 (computing 3⁴³)
- Iterate through the bits of y (43 in binary: 101011)
- res = 1

 $res = 1^2 = 1$ res = 1 * x = x $res = x^2 = x^2$ $res = (x^2)^2 = x^4$ $res = x^4 * x = x^5$ $res = (x^5)^2 = x^{10}$ res = $(x^{10})^2$ = x^{20} $res = x^{20} * x = x^{21}$ $res = (x^{21})^2 = x^{42}$ $res = x^{42} * x = x^{43}$

Does this solve our problem with mult times?

- Nope, still squaring res everytime
 - We'll have to live with huge output sizes
- This does, however, save us recursive call overhead
 - Practical savings in runtime

Greatest Common Divisor

- GCD(a, b)
 - Largest int that evenly divides both a and b
- Easiest approach:
 - BRUTE FORCE

```
i = min(a, b)
while(a % i != 0 || b % i != 0):
    i--
```

- Runtime?
 - Θ(min(a, b))
 - Linear!
 - In *value* of min(a, b)...
 - Exponential in n
 - Assuming a, b are n-bit integers

Euclid's algorithm

Euclidean example 1

- GCD(30, 24)
 - o = GCD(24, 30 % 24)
- = GCD(24, 6)
 - o = GCD(6, 24 % 6)
- = GCD(6, 0)...
 - Base case! Overall GCD is 6

Euclidean example 2

- = GCD(99, 78)
 - 99 = 78 * 1 + 21 ←

- = GCD(78, 21)
 - 78 = 21 * 3 + 15
- = GCD(21, 15)
 - 21 = 15 ***** 1 + 6
- = GCD (15, 6)
 - 15 = 6 * 2 + 3
- = GCD(6, 3)

 \circ 6 = 3 * 2 + 0

• = 3

Analysis of Euclid's algorithm

- Runtime?
 - Tricky to analyze, has been shown to be linear in n
 - Where, again, n is the number of bits in the input

Extended Euclidean algorithm

• In addition to the GCD, the Extended Euclidean algorithm

(XGCD) produces values x and y such that:

- \circ GCD(a, b) = i = ax + by
- Examples:
 - GCD(30, 24) = 6 = 30 * 1 + 24 * -1
 - GCD(99, 78) = 3 = 99 * -11 + 78 * 14
- Can be done in the same linear runtime!

Extended Euclidean example

- = GCD(99, 78)
 - **99 = 78 * 1 + 21**
- = GCD(78, 21)
 - 78 = 21 * 3 + 15
- = GCD(21, 15)
 - 21 = 15 * 1 + 6
- = GCD (15, 6)
 - **15 = 6 * 2 + 3**
- = GCD(6, 3)

○ 6 = 3 * 2 + 0

- 3 = 15 (2 * 6)
- 6 = 21 15
 - o 3 = 15 (2 * (21 15))
 - = 15 (2 * 21) + (2 * 15)
 - = (3 * 15) (2 * 21)

$$0 \quad 15 = 78 - (3 * 21)$$

$$0 \quad 3 = (3 * (78 - (3 * 21)))$$

$$- (2 * 21)$$

$$0 \quad - (3 * 78) \quad (11 * 21)$$

• = 3

OK, but why?

• This and all of our large integer algorithms will be handy when we look at algorithms for implementing cryptography

Introduction to crypto

- Cryptography enabling secure communication in the presence of third parties
 - Alice wants to send Bob a message without anyone else being able to read it

Enter the adversary

- Consider the adversary to be anyone that could try to eavesdrop on Alice and Bob communicating
 - People in the same coffee shop as Alice or Bob as they talk over WiFi
 - Admins operating the network between Alice and Bob
 - And mirroring their traffic to the NSA...
- Will have access to:
 - The *ciphertext*
 - The encrypted message
 - The encryption algorithm
 - At least Alice and Bob should assume the adversary does
- The key material (K) is the only thing Bob knows that the adversary does not

Cryptography has been around for some time

- Early, classic encryption scheme:
 - Caesar cipher:
 - "Shift" the alphabet by a set amount
 - Use this shifted alphabet to send messages
 - The "key" is the amount the alphabet is shifted

Alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ

XYZABCDEFGHIJKLMNOPQRSTUVW

Yes, that Caesar

Shift 3

By modern standards, incredibly easy to crack

• BRUTE FORCE

- Try every possible shift
 - 25 options for the English alphabet
 - 255 for ASCII
- OK, let's make it harder to brute force
 - Instead of using a shifted alphabet, let's use a random permutation of the alphabet
 - Key is now this permutation, not just a shift value
 - R size alphabet means R! possible permutations!

By modern standards, incredibly easy to crack

- Just requires a bit more sophisticated of an algorithm
- Analyzing encrypted English for example
 - Sentences have a given structure
 - Character frequencies are skewed
 - Essentially playing Wheel of Fortune

So what is a good cipher?

- One-time pads
 - List of one-time use keys (called a *pad*) here
- To send a message:
 - Take an unused pad
 - Use modular addition to combine key with message
 - For binary data, XOR
 - Send to recipient
- Upon receiving a message:
 - Take the next pad
 - Use modular subtraction to combine key with message
 - For binary data, XOR
 - Read result
- Proven to provide perfect secrecy

Difficulties with one-time pads

- Pads must be truly random
- Both sender and receiver must have a matched list of pads
 - in the appropriate order
- Once you run out of pads, no more messages can be sent

Symmetric ciphers

- E.g., DES, AES, Blowfish
- Users share a single key
 - Key is used to encrypt/decrypt many messages back and forth
- Encryptions/decryptions will be fast
 - \circ $\;$ Typically linear in the size the input
- Ciphertext should appear random
- Best way to recover plaintext should be a brute force attack on the encryption key
 - Which we have shown to be infeasible for 128bit AES keys

Problems with symmetric ciphers

- Alice and Bob have to both know the same key
 How can you securely transmit the key from Alice to Bob?
- Further, if Alice also wants to communicate with Charlie, her and Charlie will need to know the same key, a different key from the key Alice shares with Bob
 - Alice and Danielle will also have to share a different key...
 - etc.
- Solution next lecture