CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

More Math

Exponentiation

- x^{y}
- Can easily compute with a simple algorithm:

$$
\begin{aligned}
& \text { ans }=1 \\
& \text { for } \mathrm{i}=1 \ldots \mathrm{y}^{2} \\
& \quad \text { ans }=\text { ans }{ }^{*} \mathrm{x}
\end{aligned}
$$

- Runtime?
- It's just a for loop with a single multiplication...

Just like with multiplication, let's consider large integers...

- Runtime = \# of iterations * cost to multiply
- Cost to multiply was covered in the last lecture
- So how many iterations?
- Single loop from 1 to y, so linear, right?
- What is the size of our input?
- n is the bitlength of $y \ldots$
- So, linear in the value of y...
- But, increasing n by 1 doubles the number of iterations
- $\Theta\left(2^{n}\right)$
- Exponential in the bitlength of y

This is RIDICULOUSLY BAD

- Assuming 512 bit operands, 2^{512} :
- 134078079299425970995740249982058461274793658205923 933777235614437217640300735469768018742981669034276 900318581864860508537538828119465699464336490060840 96
- $=1.3$ * 10^{154}
- Assuming we can do mults in 1 cycle...
- Which we can't as we learned last lecture
- And further that these operations are completely parallelizable
- 83 GHz cores $=24,000,000,000 \mathrm{cycles} /$ second
- $\left(2^{512} / 24000000000\right) / 3600 * 24 * 365=$
- 1.77 * 10^{136} years to compute

This is way too long to do exponentiations!

- So how do we do better?
- Let's try divide and conquer!
- When y is even: $x^{y}=\left(x^{(y / 2)}\right)^{2}$
- When y is odd: $x^{y}=x *\left(x^{(y / 2)}\right)^{2}$
- Analyzing a recursive approach:
- Base case?
- When y is $1, x^{y}$ is x
- When y is $0, x^{y}$ is 1
- Runtime?

Building another recurrence relation

- $x^{y}=\left(x^{(y / 2)}\right)^{2}=x^{(y / 2)} * x^{(y / 2)}$
- Similarly, $\left(x^{(y / 2)}\right)^{2} * x=x^{(y / 2) *} x^{(y / 2) *} x$
- So, our recurrence relation is:
- $T(n)=T(n-1)+$?
- How much work is done per call?
- 1 (or 2) multiplication(s)
- Examined runtime of multiplication last lecture
- But how big are the operands in this case?

Determining work done per call

- Base case returns x
- n bits
- Base case results are multiplied: x * x
- n bit operands
- Result size?
- $2 n$
- These results are then multiplied: $x^{2} * x^{2}$
- $2 n$ bit operands
- Result size?
- 4n bits
- $x^{(y / 2)} * x^{(y / 2)}$?
- $(y / 2) * n$ bit operands $=2^{(n-1)} * n$ bit operands
- Result size? y * n bits $=2^{n}$ * n bits

Multiplication input size increases throughout

- Our recurrence relation looks like:
- $T(n)=T(n-1)+\Theta\left(\left(2^{(n-1)} * n\right)^{2}\right)$

multiplication input size
squared from the used of the gradeschool algorithm

Runtime analysis

- Can we use the master theorem?
- Nope, we don't have ab>1
- OK, so let's reason it through ...
- How many times can y be divided by 2 until a base case?
- $\lg (\mathrm{y})$
- Further, we know the max value of y
- Relative to n, that is:
- 2^{n}
- So, we have, at most $\lg (y)=\lg \left(2^{n}\right)=n$ recursions

But we need to do expensive mult in each call

- We need to do $\Theta\left(\left(2^{(n-1)} \text { * } n\right)^{2}\right)$ work in just the root call!
- Our runtime is dominated by multiplication time
- Exponentiation quickly generates HUGE numbers
- Time to multiply them quickly becomes impractical

Can we do better?

- We go "top-down" in the recursive approach
- Start with n
- Halve n until we reach the base case
- Combine base case results
- Continue combining until we arrive at the solution
- What about a "bottom-up" approach?
- Start with our base case
- Operate on it until we reach a solution

A bottom-up approach

- To calculate x^{y}

```
res = 1
foreach bit in y:
    res = res}\mp@subsup{}{}{2
    if bit == 1:
        res = res * x
```


Bottom-up exponentiation example

- Consider x^{y} where x is 3 and y is 43 (computing 3^{43})
- Iterate through the bits of y (43 in binary: 101011)
- $\mathrm{res}=1$

$$
\begin{array}{ll}
\text { res }=1^{2} & =1 \\
\text { res }=1 * x & =x \\
\text { res }=x^{2} & =x^{2} \\
\text { res }=\left(x^{2}\right)^{2} & =x^{4} \\
\text { res }=x^{4} * x & =x^{5} \\
\text { res }=\left(x^{5}\right)^{2} & =x^{10} \\
\text { res }=\left(x^{10}\right)^{2} & =x^{20} \\
\begin{array}{ll}
\text { res }=x^{20} * x & =x^{21} \\
\text { res }=\left(x^{21}\right)^{2} & =x^{42} \\
\text { res }=x^{42} * x & =x^{43}
\end{array}
\end{array}
$$

Does this solve our problem with mult times?

- Nope, still squaring res everytime
- We'll have to live with huge output sizes
- This does, however, save us recursive call overhead
- Practical savings in runtime

Greatest Common Divisor

- GCD (a, b)
- Largest int that evenly divides both a and b
- Easiest approach:
- BRUTE FORCE

```
i = min(a, b)
while(a % i != 0 || b % i != 0):
    i--
```

- Runtime?
- $\Theta(\min (a, b))$
- Linear!
- In value of $\min (a, b)$...
- Exponential in n
- Assuming a, b are n -bit integers

Euclid's algorithm

b

- $\operatorname{GCD}(\mathrm{a}, \mathrm{b})=\operatorname{GCD}(\mathrm{b}, \mathrm{a} \% \mathrm{~b})$
- where $a>b$
- Repeat until a $\%$ b == 0

a \% b

Euclidean example 1

- $\operatorname{GCD}(30,24)$
- $=\operatorname{GCD}(24,30 \% 24)$
- $=\operatorname{GCD}(24,6)$
- $=\operatorname{GCD}(6,24 \% 6)$
- $=\operatorname{GCD}(6,0) . .$.
- Base case! Overall GCD is 6

Euclidean example 2

- $=\operatorname{GCD}(99,78)$

$$
\text { - } 99=78 * 1+21 \quad a=b *(a / b)+(a \% b)
$$

- $=\operatorname{GCD}(78,21)$
- $78=21$ * $3+15$
- $=\operatorname{GCD}(21,15)$
- $21=15$ * $1+6$
- $=\operatorname{GCD}(15,6)$
- $15=6$ * $2+3$
- $=\operatorname{GCD}(6,3)$
- $6=3$ * $2+0$
- $=3$

Analysis of Euclid's algorithm

- Runtime?
- Tricky to analyze, has been shown to be linear in n
- Where, again, n is the number of bits in the input

Extended Euclidean algorithm

- In addition to the GCD, the Extended Euclidean algorithm (XGCD) produces values x and y such that:
- $\operatorname{GCD}(a, b)=i=a x+b y$
- Examples:
- $\operatorname{GCD}(30,24)=6=30 * 1+24 *-1$
- $\operatorname{GCD}(99,78)=3=99 *-11+78 * 14$
- Can be done in the same linear runtime!

Extended Euclidean example

$$
\text { - = GCD }(15,6)
$$

$$
\text { - } 15=6 * 2+3
$$

- $=\operatorname{GCD}(6,3)$
- $6=3 * 2+0$

$$
\begin{aligned}
& \text { - }=\operatorname{GCD}(99,78) \\
& \text { - } 99=78 \text { * } 1+21 \\
& \text { - }=\operatorname{GCD}(78,21) \\
& \text { - } 78=21 \text { * } 3+15 \\
& \text { - }=\operatorname{GCD}(21,15) \\
& \text { - } 21=15 \text { * } 1+6
\end{aligned}
$$

- $3=15-(2$ * 6$)$
- $6=21-15$

$$
\begin{aligned}
3 & =15-(2 *(21-15)) \\
& =15-(2 * 21)+(2 * 15) \\
& =(3 * 15)-(2 * 21)
\end{aligned}
$$

- $15=78-(3$ * 21$)$
-

$$
\begin{aligned}
3 & =(3 *(78-(3 * 21))) \\
& -(2 * 21) \\
& =(3 * 78)-(11 * 21)
\end{aligned}
$$

- $21=99-78$

$$
\begin{array}{ll}
\circ & 3
\end{array}=(3 * 78)-(11 *(99-78)), ~(14 * 78)-(11 * 99)
$$

OK, but why?

- This and all of our large integer algorithms will be handy when we look at algorithms for implementing cryptography

Introduction to crypto

- Cryptography - enabling secure communication in the presence of third parties
- Alice wants to send Bob a message without anyone else being able to read it

Alice $\rightarrow \mathrm{M} \rightarrow$ Encrypt $\rightarrow \mathrm{C} \rightarrow$ Decrypt $\rightarrow \mathrm{M} \rightarrow$ Bob

Enter the adversary

- Consider the adversary to be anyone that could try to eavesdrop on Alice and Bob communicating
- People in the same coffee shop as Alice or Bob as they talk over WiFi
- Admins operating the network between Alice and Bob
- And mirroring their traffic to the NSA...
- Will have access to:
- The ciphertext
- The encrypted message
- The encryption algorithm
- At least Alice and Bob should assume the adversary does
- The key material (K) is the only thing Bob knows that the adversary does not

Cryptography has been around for some time

- Early, classic encryption scheme:

Yes, that Caesar

- Caesar cipher:
- "Shift" the alphabet by a set amount
- Use this shifted alphabet to send messages
- The "key" is the amount the alphabet is shifted
Alphabet

ABCDEFGHIJKLMNOPQRSTUVWXYZ
 XYZABCDEFGHIJKLMNOPQRSTUVW

Shift 3

By modern standards, incredibly easy to crack

- BRUTE FORCE
- Try every possible shift
- 25 options for the English alphabet
- 255 for ASCII
- OK, let's make it harder to brute force
- Instead of using a shifted alphabet, let's use a random permutation of the alphabet
- Key is now this permutation, not just a shift value
- R size alphabet means R ! possible permutations!

By modern standards, incredibly easy to crack

- Just requires a bit more sophisticated of an algorithm
- Analyzing encrypted English for example
- Sentences have a given structure
- Character frequencies are skewed
- Essentially playing Wheel of Fortune

So what is a good cipher?

- One-time pads
- List of one-time use keys (called a pad) here
- To send a message:
- Take an unused pad
- Use modular addition to combine key with message ■ For binary data, XOR
- Send to recipient
- Upon receiving a message:
- Take the next pad
- Use modular subtraction to combine key with message
- For binary data, XOR
- Read result
- Proven to provide perfect secrecy

Difficulties with one-time pads

- Pads must be truly random
- Both sender and receiver must have a matched list of pads in the appropriate order
- Once you run out of pads, no more messages can be sent

Symmetric ciphers

- E.g., DES, AES, Blowfish
- Users share a single key
- Key is used to encrypt/decrypt many messages back and forth
- Encryptions/decryptions will be fast
- Typically linear in the size the input
- Ciphertext should appear random
- Best way to recover plaintext should be a brute force attack on the encryption key
- Which we have shown to be infeasible for 128bit AES keys

Problems with symmetric ciphers

- Alice and Bob have to both know the same key
- How can you securely transmit the key from Alice to Bob?
- Further, if Alice also wants to communicate with Charlie, her and Charlie will need to know the same key, a different key from the key Alice shares with Bob
- Alice and Danielle will also have to share a different key...
- etc.
- Solution next lecture

