
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

More Math

● xy

● Can easily compute with a simple algorithm:

Exponentiation

ans = 1
for i = 1 .. y:

ans = ans * x

● Runtime?

○ It's just a for loop with a single multiplication…

● Runtime = # of iterations * cost to multiply

● Cost to multiply was covered in the last lecture

● So how many iterations?

○ Single loop from 1 to y, so linear, right?

■ What is the size of our input?

● n is the bitlength of y…

● So, linear in the value of y…

● But, increasing n by 1 doubles the number of iterations

○ Θ(2n)

■ Exponential in the bitlength of y

Just like with multiplication, let's consider large integers...

● Assuming 512 bit operands, 2512:
○ 134078079299425970995740249982058461274793658205923

933777235614437217640300735469768018742981669034276

900318581864860508537538828119465699464336490060840
96
■ = 1.3 * 10154

● Assuming we can do mults in 1 cycle…
○ Which we can’t as we learned last lecture

● And further that these operations are completely
parallelizable

● 8 3GHz cores = 24,000,000,000 cycles/second
○ (2512 / 24000000000) / 3600 * 24 * 365 =

■ 1.77 * 10136 years to compute

This is RIDICULOUSLY BAD

● So how do we do better?

● Let’s try divide and conquer!

○ When y is even: xy = (x(y/2))2

○ When y is odd: xy = x * (x(y/2))2

● Analyzing a recursive approach:

○ Base case?

■ When y is 1, xy is x

■ When y is 0, xy is 1

○ Runtime?

This is way too long to do exponentiations!

● xy = (x(y/2))2 = x(y/2) * x(y/2)

○ Similarly, (x(y/2))2 * x = x(y/2) * x(y/2) * x

● So, our recurrence relation is:

○ T(n) = T(n-1) + ?

■ How much work is done per call?

■ 1 (or 2) multiplication(s)

● Examined runtime of multiplication last lecture

● But how big are the operands in this case?

Building another recurrence relation

● Base case returns x
○ n bits

● Base case results are multiplied: x * x
○ n bit operands
○ Result size?

■ 2n
● These results are then multiplied: x2 * x2

○ 2n bit operands
○ Result size?

■ 4n bits
● …
● x(y/2) * x(y/2)?

○ (y / 2) * n bit operands = 2(n-1) * n bit operands
○ Result size? y * n bits = 2n * n bits

Determining work done per call

● Our recurrence relation looks like:

○ T(n) = T(n-1) + Θ((2(n-1) * n)2)

Multiplication input size increases throughout

multiplication input size

squared from the used of the
gradeschool algorithm

● Can we use the master theorem?

○ Nope, we don’t have a b > 1

● OK, so let’s reason it through ...

○ How many times can y be divided by 2 until a base case?

■ lg(y)

○ Further, we know the max value of y

■ Relative to n, that is:

● 2n

○ So, we have, at most lg(y) = lg(2n) = n recursions

Runtime analysis

● We need to do Θ((2(n-1) * n)2) work in just the root call!

○ Our runtime is dominated by multiplication time

■ Exponentiation quickly generates HUGE numbers

■ Time to multiply them quickly becomes impractical

But we need to do expensive mult in each call

● We go “top-down” in the recursive approach

○ Start with n

○ Halve n until we reach the base case

○ Combine base case results

○ Continue combining until we arrive at the solution

● What about a “bottom-up” approach?

○ Start with our base case

○ Operate on it until we reach a solution

Can we do better?

res = 1

foreach bit in y:

res = res2

if bit == 1:

res = res * x

A bottom-up approach

● To calculate xy

From most to least significant

Bottom-up exponentiation example

● Consider xy where x is 3 and y is 43 (computing 343)
● Iterate through the bits of y (43 in binary: 101011)
● res = 1

res = 12 = 1

 res = 1 * x = x

res = x2 = x2

res = (x2)2 = x4

 res = x4 * x = x5

res = (x5)2 = x10

res = (x10)2 = x20

 res = x20 * x = x21

res = (x21)2 = x42

 res = x42 * x = x43

● Nope, still squaring res everytime

○ We’ll have to live with huge output sizes

● This does, however, save us recursive call overhead

○ Practical savings in runtime

Does this solve our problem with mult times?

● GCD(a, b)
○ Largest int that evenly divides both a and b

● Easiest approach:
○ BRUTE FORCE

Greatest Common Divisor

i = min(a, b)

while(a % i != 0 || b % i != 0):

i--

● Runtime?
○ Θ(min(a, b))
○ Linear!

■ In value of min(a, b)...
○ Exponential in n

■ Assuming a, b are n-bit integers

● GCD(a, b) = GCD(b, a % b)

○ where a > b

● Repeat until a % b == 0

Euclid’s algorithm

a

b

a % b

● GCD(30, 24)

○ = GCD(24, 30 % 24)

● = GCD(24, 6)

○ = GCD(6, 24 % 6)

● = GCD(6, 0)...

○ Base case! Overall GCD is 6

Euclidean example 1

● = GCD(99, 78)

○ 99 = 78 * 1 + 21

● = GCD(78, 21)

○ 78 = 21 * 3 + 15

● = GCD(21, 15)

○ 21 = 15 * 1 + 6

● = GCD (15, 6)

○ 15 = 6 * 2 + 3

● = GCD(6, 3)

○ 6 = 3 * 2 + 0

● = 3

Euclidean example 2

a = b * (a/b) + (a%b)

● Runtime?

○ Tricky to analyze, has been shown to be linear in n

■ Where, again, n is the number of bits in the input

Analysis of Euclid’s algorithm

● In addition to the GCD, the Extended Euclidean algorithm

(XGCD) produces values x and y such that:

○ GCD(a, b) = i = ax + by

● Examples:

○ GCD(30, 24) = 6 = 30 * 1 + 24 * -1

○ GCD(99, 78) = 3 = 99 * -11 + 78 * 14

● Can be done in the same linear runtime!

Extended Euclidean algorithm

● = GCD(99, 78)

○ 99 = 78 * 1 + 21

● = GCD(78, 21)

○ 78 = 21 * 3 + 15

● = GCD(21, 15)

○ 21 = 15 * 1 + 6

● = GCD (15, 6)

○ 15 = 6 * 2 + 3

● = GCD(6, 3)

○ 6 = 3 * 2 + 0

● = 3

Extended Euclidean example

● 3 = 15 - (2 * 6)

● 6 = 21 - 15
○ 3 = 15 - (2 * (21 - 15))
○ = 15 - (2 * 21) + (2 * 15)
○ = (3 * 15) - (2 * 21)

● 15 = 78 - (3 * 21)
○ 3 = (3 * (78 - (3 * 21)))

 - (2 * 21)
○ = (3 * 78) - (11 * 21)

● 21 = 99 - 78
○ 3 = (3 * 78) - (11 * (99 - 78))
○ = (14 * 78) - (11 * 99)
○ = 99 * -11 + 78 * 14

● This and all of our large integer algorithms will be handy
when we look at algorithms for implementing cryptography

OK, but why?

● Cryptography - enabling secure communication in the

presence of third parties

○ Alice wants to send Bob a message without anyone else being

able to read it

Introduction to crypto

Alice M Encrypt C Decrypt BobM

● Consider the adversary to be anyone that could try to
eavesdrop on Alice and Bob communicating
○ People in the same coffee shop as Alice or Bob as they talk

over WiFi
○ Admins operating the network between Alice and Bob

■ And mirroring their traffic to the NSA…
● Will have access to:

○ The ciphertext
■ The encrypted message

○ The encryption algorithm
■ At least Alice and Bob should assume the adversary does

● The key material (K) is the only thing Bob knows that the
adversary does not

Enter the adversary

● Early, classic encryption scheme:
○ Caesar cipher:

■ “Shift” the alphabet by a set amount
■ Use this shifted alphabet to send messages

■ The “key” is the amount the alphabet is
shifted

Cryptography has been around for some time

ABCDEFGHIJKLMNOPQRSTUVWXYZ

XYZABCDEFGHIJKLMNOPQRSTUVW

Yes, that Caesar

Alphabet

Shift 3

● BRUTE FORCE

○ Try every possible shift

■ 25 options for the English alphabet

■ 255 for ASCII

● OK, let's make it harder to brute force

○ Instead of using a shifted alphabet, let's use a random

permutation of the alphabet

■ Key is now this permutation, not just a shift value

○ R size alphabet means R! possible permutations!

By modern standards, incredibly easy to crack

● Just requires a bit more sophisticated of an algorithm

● Analyzing encrypted English for example

○ Sentences have a given structure

○ Character frequencies are skewed

○ Essentially playing Wheel of Fortune

By modern standards, incredibly easy to crack

● One-time pads
○ List of one-time use keys (called a pad) here

● To send a message:
○ Take an unused pad
○ Use modular addition to combine key with message

■ For binary data, XOR
○ Send to recipient

● Upon receiving a message:
○ Take the next pad
○ Use modular subtraction to combine key with message

■ For binary data, XOR
○ Read result

● Proven to provide perfect secrecy

So what is a good cipher?

● Pads must be truly random

● Both sender and receiver must have a matched list of pads

in the appropriate order

● Once you run out of pads, no more messages can be sent

Difficulties with one-time pads

● E.g., DES, AES, Blowfish
● Users share a single key

○ Key is used to encrypt/decrypt many messages back and forth
● Encryptions/decryptions will be fast

○ Typically linear in the size the input
● Ciphertext should appear random
● Best way to recover plaintext should be a brute force attack

on the encryption key
○ Which we have shown to be infeasible for 128bit AES keys

Symmetric ciphers

Alice M Encrypt C Decrypt BobM

K K

● Alice and Bob have to both know the same key
○ How can you securely transmit the key from Alice to Bob?

● Further, if Alice also wants to communicate with Charlie, her
and Charlie will need to know the same key, a different key
from the key Alice shares with Bob
○ Alice and Danielle will also have to share a different key…
○ etc.

● Solution next lecture

Problems with symmetric ciphers

