CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Integer Multiplication

Integer multiplication

- Say we have 5 baskets with 8 apples in each
 - How do we determine how many apples we have?
 - Count them all?
 - That would take awhile...
 - Since we know we have 8 in each basket, and 5 baskets, let's simply add 8 + 8 + 8 + 8 + 8
 - = 40
 - This is essentially multiplication!
 - 8 * 5 = 8 + 8 + 8 + 8 + 8

What about bigger numbers?

- e.g. 1284 * 356
 - That would take much longer than counting the 40 apples!
- Let's think of it like this:
 - 1284 * 356 = 1284 * 6 + 1284 * 50 + 1284 * 300

	1284
X	356
	7704
+	64200
+	385200
=	457104

OK, I'm guessing we all knew that...

- ... and learned it quite some time ago ...
- So why bring it up now? What is there to cover about multiplication

- What is the runtime of this multiplication algorithm?
- What about space complexity?

Yeah, but the processor has a MUL instruction

- Assuming x86
- Given two 32 bit integers, MUL will produce a 64 bit integer in a few cycles
- What about when we need to multiply large ints?
 - VERY large ints?
 - RSA keys should be 2048 bits
 - Back to grade school...

Gradeschool algorithm on binary numbers

10100000100

x 101100100

1010000010000000000

1101111100110010000

Let's improve the space requirements

- Assume x and y are n digits long
- Want to compute z (2n-1 digits long)

• By calculating the result by column, we can achieve huge memory savings

How can we improve on time?

- Let's try to divide and conquer:
 - Break our n-bit integers in half:
 - x = 1001011011001000, n = 16
 - Let the high-order bits be $x_{H} = 10010110$
 - Let the low-order bits be $x_{L} = 11001000$
 - $x = 2^{n/2}x_{H} + x_{L}$
 - Do the same for y
 - $x * y = (2^{n/2}x_H + x_L) * (2^{n/2}y_H + y_L)$
 - $x * y = 2^n x_H y_H + 2^{n/2} (x_H y_L + x_L y_H) + x_L y_L$

So what does this mean?

4 multiplications of n/2 bit integers

Actually 16 multiplications of n/4 bit integers (plus additions/shifts)
Actually 64 multiplications of n/8 bit integers (plus additions/shifts)

So what's the runtime?

- Recursion really complicates our analysis...
- We'll use a *recurrence relation* to analyze the recursive runtime
 - Goal is to determine:
 - How much work is done in the current recursive call?
 - How much work is passed on to future recursive calls?
 - All in terms of input size

Introduction to Recurrence Relations

 Before tackling the divide & conquer multiplication algorithm, let's start with a more familiar algorithm:
 Merge sort

```
void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid + 1, hi);
    merge(a, aux, lo, mid, hi);
}</pre>
```

• What's the runtime for Merge sort?

Recurrence Relation for Merge Sort

```
void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid + 1, hi);
    merge(a, aux, lo, mid, hi);</pre>
```

- }
- Let's determine:
 - How much work is done in the current recursive call?
 - How much work is passed on to future recursive calls?
 - How many recursive calls do we make in the current call?
 - What assumptions did we make?

Soooo... what's the runtime?

- Need to solve the recurrence relation
 - Remove the recursive component and express it purely in terms of n
 - A "cookbook" approach to solving recurrence relations:
 - The master theorem

The master theorem

• Usable on recurrence relations of the following form:

T(n) = aT(n/b) + f(n)

- Where:
 - a is a constant >= 1
 - b is a constant > 1
 - and f(n) is an asymptotically positive function

• T(n) is $\Theta(f(n))$

- 1:
- If f(n) is $\Omega(n^{\log_b(a) + \varepsilon})$ and $(a * f(n/b) \le c * f(n))$ for some $c \le \varepsilon$
- T(n) is $\Theta(n^{\log_{b(a)}} \lg n)$
- If f(n) is $\Theta(n^{\log_b(a)})$
- T(n) is Θ(n^{log_b(a)})
- If f(n) is $O(n^{\log_{b(a)} \varepsilon})$:

T(n) = aT(n/b) + f(n)

Applying the master theorem

For our divide and conquer approach

- Being $\Theta(n)$ means f(n) is equal to n^1
- $T(n) = \Theta(n^{\log_{b(a)}} \lg n) = \Theta(n^{\log_{2}} \lg n) = \Theta(n \lg n)$

Returning to Divide & Conquer Multiplication

4 multiplications of n/2 bit integers

A couple shifts of up to n positions

Actually 16 multiplications of n/4 bit integers (plus additions/shifts)

Actually 64 multiplications of n/8 bit integers (plus additions/shifts)

Recurrence relation for divide and conquer multiplication

• Returning to divide & conquer multiplication

- Let's determine:
 - How much work is done in the current recursive call?
 - How much work is passed on to future recursive calls?
 - How many recursive calls do we make in the current call?
 - What assumptions did we make?

For our divide and conquer approach

$T(n) = 4T(n/2) + \Theta(n)$

- a =
- b =
- f(n) is

• T(n) = ?

- If f(n) is $O(n^{\log_b(a) \varepsilon})$:
 - T(n) is $\Theta(n^{\log_b(a)})$
- If f(n) is $\Theta(n^{\log_b(a)})$
 - T(n) is $\Theta(n^{\log_b(a)} \lg n)$
- If f(n) is $\Omega(n^{\log_b(a) + \varepsilon})$
 - and (a * f(n/b) <= c * f(n)) for some c < 1:
 - \circ T(n) is $\Theta(f(n))$

Conclusion

- Leaves us back where we started with the grade school algorithm...
 - \circ $\,$ Actually, the overhead of doing all of the dividing and

conquering will make it slower than grade school

SO WHY EVEN BOTHER?

- Let's look for a smarter way to divide and conquer
- Look at the recurrence relation again to see where we can improve our runtime:

Can we reduce the subproblem size?

Karatsuba's algorithm

- By reducing the number of recursive calls (subproblems), we can improve the runtime
- $x * y = 2^{n}x_{H}y_{H} + 2^{n/2}(x_{H}y_{L} + x_{L}y_{H}) + x_{L}y_{L}$ M1 M2 M3 M4

- We don't actually need to do both M2 and M3
 - We just need the sum of M2 and M3
 - If we can find this sum using only 1 multiplication, we decrease the number of recursive calls and hence improve our runtime

Karatsuba craziness

- M1 = $x_h y_h$; M2 = $x_h y_l$; M3 = $x_l y_h$; M4 = $x_l y_l$;
- The sum of all of them can be expressed as a single mult:
 - M1 + M2 + M3 + M4

$$\circ = x_h y_h + x_h y_l + x_l y_h + x_l y_l$$

$$\circ = (x_h + x_l) * (y_h + y_l)$$

- Lets call this single multiplication M5:
 - M5 = $(x_h + x_l) * (y_h + y_l) = M1 + M2 + M3 + M4$
- Hence, M5 M1 M4 = M2 + M3
- So: $x * y = 2^{n}M1 + 2^{n/2}(M5 M1 M4) + M4$
 - Only 3 multiplications required!
 - At the cost of 2 more additions, and 2 subtractions

Karatsuba runtime

- To get M5, we have to multiply (at most) n/2 + 1 bit ints
 - Asymptotically the same as our other recursive calls
- Requires extra additions and subtractions...
 - But these are all Θ(n)
- So, the recurrence relation for Karatsuba's algorithm is:
 - $T(n) = 3T(n/2) + \Theta(n)$
 - Which solves to be Θ(n^{lg 3})
 - Asymptotic improvement over grade school algorithm!
 - For large n, this will translate into practical improvement

Large integer multiplication in practice

• Can use a hybrid algorithm of grade school for large

operands, Karatsuba's algorithm for VERY large operands

• Why are we still bothering with grade school at all?

Is this the best we can do?

- The Schönhage–Strassen algorithm
 - Uses Fast Fourier transforms to achieve better asymptotic runtime
 - O(n log n log log n)
 - Fastest asymptotic runtime known from 1971-2007
 - Required n to be astronomical to achieve practical improvements to runtime
 - Numbers beyond $2^{2^{15}}$ to $2^{2^{17}}$
- Fürer was able to achieve even better asymptotic runtime in 2007
 - n log n 2^{O(log^* n)}
 - No practical difference for realistic values of n