CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Integer Multiplication

Integer multiplication

e Say we have 5 baskets with 8 apples in each

o How do we determine how many apples we have?

m Countthem all?
e That would take awhile...

m Since we know we have 8 in each basket, and 5 baskets,
let's simplyadd 8+8 +8 +8 + 8
e =40

m This is essentially multiplication!
e 8*5=8+8+8+8+8

What about bigger numbers?

o e.g. 1284 * 356

o That would take much longer than counting the 40 apples!
e Let's think of it like this:

o 1284*356=1284*6 + 1284*50 + 1284 * 300

1284
X 356
7704
+ 64200
+ 385200

457104

OK, I'm guessing we all knew that...

e ... and learned it quite some time ago ...
e So why bring it up now? What is there to cover about

multiplication

e What is the runtime of this multiplication algorithm?

e \What about space complexity?

Yeah, but the processor has a MUL instruction

e Assuming x86

e Given two 32 bit integers, MUL will produce a 64 bit integer
in a few cycles

e What about when we need to multiply large ints?
o VERY large ints?
m RSA keys should be 2048 bits

o Back to grade school...

Gradeschool algorithm on binary numbers

10100000100
X 10116001600

00000000000
000000000000
1010000010000
000000000V
00000000 VVLYLO
1010000010000000
190100000100000000
0000000000V
1010000010000000000

1101111100110010000

Let's improve the space requirements

e Assume x and y are n digits long

e Want to compute z (2n-1 digits long)

GradeschoolImproved (x, y):
s =0
for j = @ to (2n-1) do // go through digits of result
for i = @ to (n-1) do // digits of x
if (0 <= (j-i) <= (n-1)) then
s =s + x[1] * y[]-1i]
z[j] = s mod 10 // remainder to get cur digit
s =s / 10 // integer division for carry
return z

e By calculating the result by column, we can achieve huge

memory savings

How can we improve on time?

e Let's try to divide and conquer:
o Break our n-bit integers in half:
m x=1001011011001000, n =16
m Let the high-order bits be x, = 10010110
m Letthe low-order bits be x, = 11001000
m X =2, + X
m Do the same fory
B X*y= (zn/sz + XL) * (Zn/zyH + yL)

m X*y=2"xy, + Zn/Z(XHyL XY XY,

So what does this mean?

4 multiplications of n/2 bit integers
A

3 additions of n-bit integers

A couple shifts of up to n positions

Actually 16 multiplications of n/4 bit integers (plus additions/shifts)

f

Actually 64 multiplications of n/8 bit integers (plus additions/shifts)

So what's the runtime?

e Recursion really complicates our analysis...
e We'll use a recurrence relation to analyze the recursive

runtime

o Goal is to determine;:
m How much work is done in the current recursive call?
m How much work is passed on to future recursive calls?

m Allinterms of input size

Introduction to Recurrence Relations

e Before tackling the divide & conquer multiplication
algorithm, let’s start with a more familiar algorithm:
o Merge sort

void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);

merge(a, aux, lo, mid, hi);

e What's the runtime for Merge sort?

Recurrence Relation for Merge Sort

void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {
if (hi <= lo) return;
int mid = lo + (hi - 1lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid + 1, hi);

merge(a, aux, lo, mid, hi);

e Let's determine:
o How much work is done in the current recursive call?
o How much work is passed on to future recursive calls?
o How many recursive calls do we make in the current call?

o What assumptions did we make?

S0000... what's the runtime?

e Need to solve the recurrence relation

o Remove the recursive component and express it purely in

terms of n

m A“cookbook” approach to solving recurrence relations:

e The master theorem

The master theorem

e Usable on recurrence relations of the following form:
T(n) = aT(n/b) + f(n)
e Where:

o ais aconstant >=1
o Dbisaconstant > 1

o and f(n) is an asymptotically positive function

Applying the master theorem

T(n) = aT(n/b) + f(n)

e If f(n) is O(n'°&-P@-¢):
o T(n)is O(n'°e-P@)
o If f(n)is O(n'°e->@)
o T(n)is O(n'°&->@ |g n)
o If f(n)is Q(n'°8-b@+*¢) and (a * f(n/b) <= ¢ * f(n)) for some c <
1
o T(n) is ©(f(n))

For our divide and conquer approach

e a=2
o b=2
e f(n)is 2n

e SoO...

o nIog_b(a) — nIgZ — n1

T(n) = 2T(n/2) + 2n

If f(n) is O(n'o8-b@ -¢):
o T(n)is O(n'°ee-b@)
If f(n) is O(n'°8-b@)

> o T(n)is O(n'eb@ lg n)

If f(n) is Q(n'08-b@ +¢)
and (a * f(n/b) <= c * f(n)) for some c < 1:

o T(n)is O(f(n))

o Being ©(n) means f(n) is equal to n’
o T(n)=0O(n'°&-b@ |g n) = O(n'82 Ig n) = O(n Ig n)

Returning to Divide & Conquer Multiplication

4 multiplications of n/2 bit integers
A

3 additions of n-bit integers

A couple shifts of up to n positions

Actually 16 multiplications of n/4 bit integers (plus additions/shifts)

f

Actually 64 multiplications of n/8 bit integers (plus additions/shifts)

Recurrence relation for divide and conquer multiplication

e Returning to divide & conquer multiplication

e Let's determine;

O

O

How much work is done in the current recursive call?
How much work is passed on to future recursive calls?
How many recursive calls do we make in the current call?

What assumptions did we make?

For our divide and conquer approach

T(n) =4T(n/2) + ©(n)

If f(n) is O(n'08-b@ -¢):
o T(n)is ©(n'*8-b@)
If f(n) is O(n'08-b@)
o T(n)is ©(n'°&-b@ |g n)
If f(n) is Q(n'08-b@ *+¢)
and (a * f(n/b) <= c * f(n)) for some c < 1:

o T(n)is O(f(n))

Conclusion

e Leaves us back where we started with the grade school
algorithm...

o Actually, the overhead of doing all of the dividing and

conquering will make it slower than grade school

SO WHY EVEN BOTHER?

e Let's look for a smarter way to divide and conquer
e Look at the recurrence relation again to see where we can

improve our runtime;

T(n) = 4T(n/2) + ©(n)

I

Can we reduce the amount of

work done by the current call?
Can we reduce the number

of subproblems?

Can we reduce the subproblem size?

Karatsuba’s algorithm

e By reducing the number of recursive calls (subproblems), we

can improve the runtime
o XFY=2MXyy + 27X+ XY+ XY,

M1 M2 M3 M4

e We don't actually need to do both M2 and M3
o We just need the sum of M2 and M3

m If we can find this sum using only 1 multiplication, we

decrease the number of recursive calls and hence improve

our runtime

Karatsuba craziness

e M1=xy,M2=xy;M3=xy;M4=xy,;
e The sum of all of them can be expressed as a single mult:
o M1+M2+M3+ M4
O FXYh T XY T XY, T XY,
o =(X, +X)*(y, *tYy)
e Lets call this single multiplication M5:
o M5=(x, +Xx)*(y, +y)=M1+M2+M3+M4
e Hence, M5-M1-M4=M2+ M3
e SO0:x*y=2"M1+2V4M5 - M1 - M4) + M4
o Only 3 multiplications required!
o At the cost of 2 more additions, and 2 subtractions

Karatsuba runtime

e To get M5, we have to multiply (at most) n/2 + 1 bit ints
o Asymptotically the same as our other recursive calls
e Requires extra additions and subtractions...
o But these are all ©(n)
e So, the recurrence relation for Karatsuba’'s algorithm is:
o T(n)=3T(n/2) + O(n)
m Which solves to be O(n's3)

e Asymptotic improvement over grade school algorithm!
o For large n, this will translate into practical

improvement

Large integer multiplication in practice

e (an use a hybrid algorithm of grade school for large

operands, Karatsuba's algorithm for VERY large operands

o Why are we still bothering with grade school at all?

Is this the best we can do?

e The Schonhage-Strassen algorithm
o Uses Fast Fourier transforms to achieve better asymptotic
runtime
m O(nlognloglogn)
m Fastest asymptotic runtime known from 1971-2007

e Required n to be astronomical to achieve practical

improvements to runtime
o Numbers beyond 22> to 22"

e Furer was able to achieve even better asymptotic runtime in
2007
o nlogn 2000 n
o No practical difference for realistic values of n

