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Integer Multiplication



● Say we have 5 baskets with 8 apples in each

○ How do we determine how many apples we have?

■ Count them all?

● That would take awhile…

■ Since we know we have 8 in each basket, and 5 baskets, 

let’s simply add 8 + 8 + 8 + 8 + 8

● = 40

■ This is essentially multiplication!

● 8 * 5 = 8 + 8 + 8 + 8 + 8

Integer multiplication



      7704

 +   64200

 +  385200

 =  457104 

What about bigger numbers?

● e.g. 1284 * 356
○ That would take much longer than counting the 40 apples!

● Let’s think of it like this:
○ 1284 * 356 = 1284 * 6   +   1284 * 50   +   1284 * 300

1284

 x  356



● … and learned it quite some time ago …

● So why bring it up now?  What is there to cover about 

multiplication

● What is the runtime of this multiplication algorithm?

● What about space complexity?

OK, I’m guessing we all knew that...



● Assuming x86

● Given two 32 bit integers, MUL will produce a 64 bit integer 

in a few cycles

● What about when we need to multiply large ints?

○ VERY large ints?

■ RSA keys should be 2048 bits

○ Back to grade school…

Yeah, but the processor has a MUL instruction



 1101111100110010000

00000000000

  000000000000

 1010000010000

00000000000000

  000000000000000

 1010000010000000

10100000100000000

  000000000000000000

 1010000010000000000

10100000100

x   101100100

Gradeschool algorithm on binary numbers



GradeschoolImproved (x, y):
s = 0
for j = 0 to (2n-1) do        // go through digits of result

for i = 0 to (n-1) do      // digits of x
if (0 <= (j-i) <= (n-1)) then

s = s + x[i] * y[j-i]
z[j] = s mod 10         // remainder to get cur digit
s = s / 10              // integer division for carry

return z

Let’s improve the space requirements

● Assume x and y are n digits long

● Want to compute z (2n-1 digits long)

● By calculating the result by column, we can achieve huge 

memory savings



● Let’s try to divide and conquer:

○ Break our n-bit integers in half:

■ x = 1001011011001000, n = 16

■ Let the high-order bits be xH = 10010110

■ Let the low-order bits be xL = 11001000

■ x = 2n/2xH + xL

■ Do the same for y

■ x * y = (2n/2xH + xL) * (2n/2yH + yL)

■ x * y = 2nxHyH + 2n/2(xHyL + xLyH) + xLyL

How can we improve on time?



2nxHyH + 2n/2(xHyL + xLyH) + xLyL

So what does this mean?

4 multiplications of n/2 bit integers

3 additions of n-bit integers

A couple shifts of up to n positions

Actually 16 multiplications of n/4 bit integers

Actually 64 multiplications of n/8 bit integers

...

(plus additions/shifts)

(plus additions/shifts)



● Recursion really complicates our analysis…

● We’ll use a recurrence relation to analyze the recursive 

runtime

○ Goal is to determine:

■ How much work is done in the current recursive call?

■ How much work is passed on to future recursive calls?

■ All in terms of input size

So what's the runtime?



● Before tackling the divide & conquer multiplication 
algorithm, let’s start with a more familiar algorithm:
○ Merge sort

void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid + 1, hi);

merge(a, aux, lo, mid, hi);

}

● What’s the runtime for Merge sort?

Introduction to Recurrence Relations



void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid + 1, hi);

merge(a, aux, lo, mid, hi);

}

● Let’s determine:

○ How much work is done in the current recursive call?

○ How much work is passed on to future recursive calls?

○ How many recursive calls do we make in the current call?

○ What assumptions did we make?

Recurrence Relation for Merge Sort



● Need to solve the recurrence relation

○ Remove the recursive component and express it purely in 

terms of n

■ A “cookbook” approach to solving recurrence relations:

● The master theorem

Soooo… what’s the runtime?



● Usable on recurrence relations of the following form:

T(n) = aT(n/b) + f(n)

● Where:

○ a is a constant >= 1

○ b is a constant > 1

○ and f(n) is an asymptotically positive function

The master theorem



T(n) = aT(n/b) + f(n)

● If f(n) is O(nlog_b(a) - ε):

○ T(n) is Θ(nlog_b(a))

● If f(n) is Θ(nlog_b(a))

○ T(n) is Θ(nlog_b(a) lg n)

● If f(n) is Ω(nlog_b(a) + ε) and (a * f(n/b) <= c * f(n)) for some c < 

1:

○ T(n) is Θ(f(n))

Applying the master theorem



T(n) = 2T(n/2) + 2n

● a = 2

● b = 2

● f(n) is 2n

● So...

○ nlog_b(a) = nlg 2 = n1

For our divide and conquer approach

● If f(n) is O(nlog_b(a) - ε):

○ T(n) is Θ(nlog_b(a))

● If f(n) is Θ(nlog_b(a))

○ T(n) is Θ(nlog_b(a) lg n)

● If f(n) is Ω(nlog_b(a) + ε) 

and (a * f(n/b) <= c * f(n)) for some c < 1:

○ T(n) is Θ(f(n))

○ Being Θ(n) means f(n) is equal to n1

○ T(n) = Θ(nlog_b(a) lg n) = Θ(nlg 2 lg n) = Θ(n lg n)



2nxHyH + 2n/2(xHyL + xLyH) + xLyL

Returning to Divide & Conquer Multiplication

4 multiplications of n/2 bit integers

3 additions of n-bit integers

A couple shifts of up to n positions

Actually 16 multiplications of n/4 bit integers

Actually 64 multiplications of n/8 bit integers

...

(plus additions/shifts)

(plus additions/shifts)



● Returning to divide & conquer multiplication

● Let’s determine:

○ How much work is done in the current recursive call?

○ How much work is passed on to future recursive calls?

○ How many recursive calls do we make in the current call?

○ What assumptions did we make?

Recurrence relation for divide and conquer multiplication



T(n) = 4T(n/2) + Θ(n)

● a = 

● b = 

● f(n) is 

● T(n) = ?

For our divide and conquer approach

● If f(n) is O(nlog_b(a) - ε):

○ T(n) is Θ(nlog_b(a))

● If f(n) is Θ(nlog_b(a))

○ T(n) is Θ(nlog_b(a) lg n)

● If f(n) is Ω(nlog_b(a) + ε) 

and (a * f(n/b) <= c * f(n)) for some c < 1:

○ T(n) is Θ(f(n))



● Leaves us back where we started with the grade school 

algorithm…

○ Actually, the overhead of doing all of the dividing and 

conquering will make it slower than grade school

Conclusion



● Let’s look for a smarter way to divide and conquer

● Look at the recurrence relation again to see where we can 

improve our runtime:

SO WHY EVEN BOTHER?

T(n) = 4T(n/2) + Θ(n)

Can we reduce the amount of 
work done by the current call?

Can we reduce the subproblem size?

Can we reduce the number 
of subproblems?



● By reducing the number of recursive calls (subproblems), we 

can improve the runtime

● x * y = 2nxHyH + 2n/2(xHyL + xLyH) + xLyL

Karatsuba’s algorithm

M1 M2 M3 M4

● We don’t actually need to do both M2 and M3

○ We just need the sum of M2 and M3

■ If we can find this sum using only 1 multiplication, we 

decrease the number of recursive calls and hence improve 

our runtime



● M1 = xhyh; M2 = xhyl; M3 = xlyh; M4 = xlyl;
● The sum of all of them can be expressed as a single mult:

○ M1 + M2 + M3 + M4
○ = xhyh + xhyl + xlyh + xlyl

○ = (xh + xl) * (yh + yl)

● Lets call this single multiplication M5:
○ M5 = (xh + xl) * (yh + yl) = M1 + M2 + M3 + M4

● Hence, M5 - M1 - M4 = M2 + M3
● So: x * y = 2nM1 + 2n/2(M5 - M1 - M4) + M4

○ Only 3 multiplications required!
○ At the cost of 2 more additions, and 2 subtractions

Karatsuba craziness



● To get M5, we have to multiply (at most) n/2 + 1 bit ints

○ Asymptotically the same as our other recursive calls

● Requires extra additions and subtractions…

○ But these are all Θ(n)

● So, the recurrence relation for Karatsuba’s algorithm is:

○ T(n) = 3T(n/2) + Θ(n)

■ Which solves to be Θ(nlg 3)

● Asymptotic improvement over grade school algorithm!

○ For large n, this will translate into practical 

improvement

Karatsuba runtime



● Can use a hybrid algorithm of grade school for large 

operands, Karatsuba’s algorithm for VERY large operands

○ Why are we still bothering with grade school at all?

Large integer multiplication in practice



● The Schönhage–Strassen algorithm
○ Uses Fast Fourier transforms to achieve better asymptotic 

runtime
■ O(n log n log log n)
■ Fastest asymptotic runtime known from 1971-2007

● Required n to be astronomical to achieve practical 
improvements to runtime
○ Numbers beyond 22^15 to 22^17

● Fürer was able to achieve even better asymptotic runtime in 
2007
○ n log n 2O(log^* n)

○ No practical difference for realistic values of n

Is this the best we can do?


