CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Union Find

Dynamic connectivity problem

- For a given graph G, can we determine whether or not two vertices are connected in G?
- Can also be viewed as checking subset membership
- Important for many practical applications
- We will solve this problem using a union/find data structure

Union Find API

Covering the basics

```
public int count() {
    return count;
}
public boolean connected(int p, int q) {
    return find(p) == find(q);
}
```


A simple approach

- Have an id array simply store the component id for each item in the union/find structure
- Find simply returns its id
- What about union?

Example

$U(2,0)$
$U(4,7)$
$U(1,2)$
$U(3,2)$
$U(4,5)$
$U(5,7)$
$U(6,3)$

Implementing the basic approach

```
public UF(int n) {
    count = n;
    id = new int[n];
    for (int i = 0; i < n; i++) { id[i] = i; }
}
```

public int find(int p) \{ return id[p]; \}
public void union(int p, int q) \{
int $p I D=$ find $(p), q I D=$ find (q);
if (pID == qID) return;
for(int i = 0; i < id.length; i++)
if (id[i] == pID) id[i] = qID;
count--;
\}

Analysis of our simple approach

- Runtime?
- For find():
- $\Theta(1)$
- For union():
- $\Theta(\mathrm{n})$

Can we improve on union()'s runtime?

- What if we store our connected components as a forest of trees?
- Each tree representing a different connected component
- Every time a new connection is made, we simply make one tree the child of another

Tree example

Implementation using the same id array

```
public int find(int p) {
    while (p != id[p]) p = id[p];
    return p;
}
public void union(int p, int q) {
    int i = find(p);
    int j = find(q);
    if (i == j) return;
    id[j] = i;
    count--;
}
```


Forest of trees implementation analysis

- Runtime?
- find():
- Bound by the height of the tree
- union():
- Bound by the height of the tree
- What is the max height of the tree?
- Can we modify our approach to cap its max height?

Weighted tree example

Weighted trees

```
public UF(int n) {
    count = n;
    id = new int[n];
    sz = new int[n];
    for (int i = 0; i < n; i++) { id[i] = i; sz[i] = 1; }
```

\}
public void union(int p, int q) \{
int $i=f i n d(p), j=f i n d(q) ;$
if (i == j) return;
if (sz[i] < sz[j]) \{ id[i] = j; sz[j] += sz[i]; \}
else
\{ id[j] = i; sz[i] += sz[j]; \}
count--;
\}

Weighted tree approach analysis

- Runtime?
- find():
- $\Theta(\log n)$
- union():
- $\Theta(\log n)$
- Can we do any better?

Kruskal's algorithm

- With this knowledge of union/find, how, exactly can it be used as a part of Kruskal's algorithm?
- What is the runtime of Kruskal's algorithm?

From our Weighted Graphs Slides

- Kruskal's MST:
- Insert all edges into a PQ
- Grab the min edge from the PQ that does not create a cycle in the MST
- Remove it from the PQ and add it to the MST

