
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Union Find

● For a given graph G, can we determine whether or not two

vertices are connected in G?

● Can also be viewed as checking subset membership

● Important for many practical applications

● We will solve this problem using a union/find data structure

Dynamic connectivity problem

UF (int n)

void union(int p, int q)

int find (int p)

boolean connected (int p, int q)

int count()

Union Find API

Initialize with n items numbered 0 to n-1

Connect p with q

Return id of the connected
component that p is in

True if p and q are connected

Number of connected components

public int count() {

return count;

}

public boolean connected(int p, int q) {

return find(p) == find(q);

}

Covering the basics

● Have an id array simply store the component id for each

item in the union/find structure

○ Find simply returns its id

○ What about union?

A simple approach

Example

5

3

4

20

1

6

7

U(2, 0)

U(4, 7)

U(1, 2)

U(3, 2)

U(4, 5)

U(5, 7)

U(6, 3)

0 1 2 3 4 5 6

0 1 2 3 4 5 6

ID: 0 7

7

4113 3 3 46666

public UF(int n) {

count = n;

id = new int[n];

for (int i = 0; i < n; i++) { id[i] = i; }

}

public int find(int p) { return id[p]; }

public void union(int p, int q) {

int pID = find(p), qID = find(q);

if (pID == qID) return;

for(int i = 0; i < id.length; i++)

if (id[i] == pID) id[i] = qID;

count--;

}

Implementing the basic approach

● Runtime?

○ For find():

■ Θ(1)

○ For union():

■ Θ(n)

Analysis of our simple approach

● What if we store our connected components as a forest of

trees?

○ Each tree representing a different connected component

○ Every time a new connection is made, we simply make one

tree the child of another

Can we improve on union()’s runtime?

Tree example

5

3

4

20

1

6

7

0 1 2 3 4 5 6 7

2 7

1

3

U(2, 0); U(7, 4); U(1, 2);
U(3, 2); U(4, 5); U(5, 7);
U(3, 6)

Operations:

public int find(int p) {

while (p != id[p]) p = id[p];

return p;

}

public void union(int p, int q) {

int i = find(p);

int j = find(q);

if (i == j) return;

id[j] = i;

count--;

}

Implementation using the same id array

● Runtime?

○ find():

■ Bound by the height of the tree

○ union():

■ Bound by the height of the tree

● What is the max height of the tree?

○ Can we modify our approach to cap its max height?

Forest of trees implementation analysis

Weighted tree example

5

3

4

20

1

6

7

0 1 2 3 4 5 6 7

2 7

public UF(int n) {

count = n;

id = new int[n];

sz = new int[n];

for (int i = 0; i < n; i++) { id[i] = i; sz[i] = 1; }

}

public void union(int p, int q) {

int i = find(p), j = find(q);

if (i == j) return;

if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }

else { id[j] = i; sz[i] += sz[j]; }

count--;

}

Weighted trees

● Runtime?

○ find():

■ Θ(log n)

○ union():

■ Θ(log n)

● Can we do any better?

Weighted tree approach analysis

● With this knowledge of union/find, how, exactly can it be

used as a part of Kruskal’s algorithm?

○ What is the runtime of Kruskal’s algorithm?

Kruskal’s algorithm

● Kruskal’s MST:

○ Insert all edges into a PQ

○ Grab the min edge from the PQ that does not create a cycle in

the MST

○ Remove it from the PQ and add it to the MST

From our Weighted Graphs Slides

