CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Graphs

Graphs

- A graph G = (V, E)
- Where V is a set of vertices
- E is a set of edges connecting vertex pairs
- Example:

$$
\begin{aligned}
\circ & V=\{0,1,2,3,4,5\} \\
\circ & E=\{(0,1),(0,4),(1,2),(1,4),(2,3),(3,4),(3,5)\}
\end{aligned}
$$

Why?

- Can be used to model many different scenarios

Some definitions

- Undirected graph
- Edges are unordered pairs: $(A, B)==(B, A)$
- Directed graph
- Edges are ordered pairs: $(A, B)!=(B, A)$
- Adjacent vertices, also called "neighbors"
- Vertices connected by an edge

Graph sizes

- Let $\mathrm{v}=|\mathrm{V}|$, and $\mathrm{e}=|\mathrm{E}|$
- Given v, what are the minimum/maximum sizes of e ?
- Minimum value of e?
- Definition doesn't necessitate that there are any edges...
- So, 0
- Maximum of e?
- Are self edges allowed?
- Directed graph? (We'll assume self edges)
- v vertices each with edges to v vertices
- v^{2}
- Undirected graph? (We'll assume NO self edges)
- \quad v vertices with edges to v-1 vertices
- BUT remember for undirected, $(1,2)==(2,1)$
- $\mathrm{v}(\mathrm{v}-1) / 2$
- $\left(v^{2}-v\right) / 2$

More definitions

- A graph is considered sparse if:
- $e<=v \lg v$
- A graph is considered dense as it approaches the maximum number of edges
- $e=v^{2}-\varepsilon$ for directed
- $e=\left(\left(v^{2}-v\right) / 2\right)-\varepsilon$ for undirected
- A complete graph has the maximum number of edges

Representing graphs

- Typically, yes. Different spatial representations of the same vertices/edges are considered the same graph.
- Trivially, graphs can be represented as:
- List of vertices
- List of edges
- What operations would we want to perform on these lists?

Using an adjacency matrix

- Rows/columns are vertex labels
- $M[i][j]=1$ if $(i, j) \in E$
- $M[i][j]=0$ if $(i, j) \notin E$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

- Pros?
- Easy to use/intuitive
- Runtime for checking edge existence?
- Cons?
- Memory
- Time to initialize
- Time to find neighbors of a vertex

Adjacency lists

- Array of neighbor lists
- A[i] contains neighbors of vertex i
- See example
- Pros?
- Memory
- Time to find the neighbors of a node
- Cons?
- Memory
- Time to check edge existence

In general...

- Adjacency matrix is better for dense graphs
- Adjacency list is better for sparse graphs

Even more definitions

- Path
- A sequence of adjacent vertices
- Simple Path
- A path in which no vertices are repeated
- Simple Cycle
- A simple path with the same first and last vertex
- Connected Graph
- A graph in which a path exists between all vertex pairs
- Connected Component
- Connected subgraph of a graph
- Acyclic Graph
- A graph with no cycles
- Tree
\circ ?
- A connected, acyclic graph
- Has exactly v-1 edges

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
- Depth-first search (DFS)
- "Dive" as deep as possible into the graph first
- Branch when necessary
- Breadth-first search (BFS)
- Search all directions evenly
- I.e., from i, visit all of i's neighbors, then all of their neighbors, etc.

DFS

- Already seen and used this throughout the term
- For tries...
- For Huffman encoding...
- Can be easily implemented recursively
- For each node, visit first unseen neighbor
- Backtrack at dead ends (i.e., nodes with no unseen neighbors)
- Try next unseen neighbor after backtracking

DFS example

DFS example 2

- Can be easily implemented using a queue
- For each node visited, add all of its neighbors to the queue
- Vertices that have been seen but not yet visited are said to be the fringe
- Pop head of the queue to be the next visited vertex
- See example

BFS example

DFS and BFS would be called from a wrapper function

- If the graph is connected:
- dfs()/bfs() is called only once and returns a spanning tree
- Else:
- A loop in the wrapper function will have to continually call dfs()/bfs() while there are still unseen vertices
- Each call will yield a spanning tree for a connected component of the graph

Shortest paths

- BFS traversals can further be used to determine the shortest path between two vertices

Analysis of graph traversals

- At a high level, DFS and BFS have the same runtime
- Each node must be seen and then visited, but the order will differ between the two approaches
- Adjacency matrix
- $\Theta(v)$ to consider all neighbors
- To traverse a row/column of the matrix
- Doing this for each of v vertices leads to $\Theta\left(v^{2}\right)$ runtime
- Adjacency list
- Must consider the neighbor list of each node in the array
- So, we must visit every node in the whole adjacency list
- $\Theta(v+e)$
- Why not just e?

DFS pre-order traversal

DFS in-order traversal

DFS post-order traversal

Biconnected graphs

- A biconnected graph has at least 2 distinct paths (no common edges or vertices) between all vertex pairs
- Any graph that is not biconnected has one or more articulation points
- Vertices, that, if removed, will separate the graph
- Any graph that has no articulation points is biconnected
- Thus we can determine that a graph is biconnected if we look for, but do not find, any articulation points

Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
- Have it be directed
- Create "back edges" when considering a node that has already been visited in constructing the spanning tree
- Label each vertex v with with two numbers:
- num(v) = pre-order traversal order
- low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
- Min of:
- num(v)
- Lowest num(w) of all back edges (v, w)
- Lowest low(w) of all spanning tree edges (v, w)

Finding articulation points example

So where are the articulation points?

- If any (non-root) vertex v has some child w such that $\operatorname{low}(w) \geq$ num(v), v is an articulation point
- What about if we start at an articulation point?
- If the root of the spanning tree has more than one child, it is an articulation point

