
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Graphs

0

1

43

2

5

● A graph G = (V, E)

○ Where V is a set of vertices

○ E is a set of edges connecting vertex pairs

● Example:

○ V = {0, 1, 2, 3, 4, 5}

○ E = {(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)}

Graphs

0

1

43

2

5

● Can be used to model many different scenarios

Why?

● Undirected graph

○ Edges are unordered pairs: (A, B) == (B, A)

● Directed graph

○ Edges are ordered pairs: (A, B) != (B, A)

● Adjacent vertices, also called “neighbors”

○ Vertices connected by an edge

Some definitions

● Let v = |V|, and e = |E|
● Given v, what are the minimum/maximum sizes of e?

○ Minimum value of e?
■ Definition doesn’t necessitate that there are any edges…
■ So, 0

○ Maximum of e?
■ Are self edges allowed?
■ Directed graph? (We’ll assume self edges)

● v vertices each with edges to v vertices
● v2

■ Undirected graph? (We’ll assume NO self edges)
● v vertices with edges to v-1 vertices

○ BUT remember for undirected, (1, 2) == (2, 1)
● v(v - 1) / 2

○ (v2 - v) / 2

Graph sizes

● A graph is considered sparse if:

○ e <= v lg v

● A graph is considered dense as it approaches the maximum

number of edges

○ e = v2 - ε for directed

○ e = ((v2 - v) / 2) - ε for undirected

● A complete graph has the maximum number of edges

More definitions

● Trivially, graphs can be represented as:

○ List of vertices

○ List of edges

○ What operations would we want to perform on these lists?

Representing graphs

=?

● Typically, yes. Different spatial representations of the same

vertices/edges are considered the same graph.

0

1

43

2

5

0

1

4 3

2

5

● Rows/columns are vertex labels

○ M[i][j] = 1 if (i, j) ∈ E

○ M[i][j] = 0 if (i, j) ∉ E

Using an adjacency matrix

0 1 2 3 4 5

0 0 1 0 0 1 0

1 1 0 1 0 1 0

2 0 1 0 1 0 0

3 0 0 1 0 1 1

4 1 1 0 1 0 0

5 0 0 0 1 0 0

● Pros?

○ Easy to use/intuitive

○ Runtime for checking edge existence?

● Cons?

○ Memory

○ Time to initialize

○ Time to find neighbors of a vertex

Adjacency matrix analysis

● Array of neighbor lists
○ A[i] contains neighbors of vertex i

● See example

● Pros?
○ Memory
○ Time to find the neighbors of a node

● Cons?
○ Memory
○ Time to check edge existence

Adjacency lists

● Adjacency matrix is better for dense graphs

● Adjacency list is better for sparse graphs

In general…

● Path
○ A sequence of adjacent vertices

● Simple Path
○ A path in which no vertices are repeated

● Simple Cycle
○ A simple path with the same first and last vertex

● Connected Graph
○ A graph in which a path exists between all vertex pairs

● Connected Component
○ Connected subgraph of a graph

● Acyclic Graph
○ A graph with no cycles

● Tree
○ ?
○ A connected, acyclic graph

■ Has exactly v-1 edges

Even more definitions

● What is the best order to traverse a graph?

● Two primary approaches:

○ Depth-first search (DFS)

■ “Dive” as deep as possible into the graph first

■ Branch when necessary

○ Breadth-first search (BFS)

■ Search all directions evenly

● I.e., from i, visit all of i’s neighbors, then all of their

neighbors, etc.

Graph traversal

● Already seen and used this throughout the term

○ For tries…

○ For Huffman encoding…

● Can be easily implemented recursively

○ For each node, visit first unseen neighbor

○ Backtrack at dead ends (i.e., nodes with no unseen neighbors)

■ Try next unseen neighbor after backtracking

DFS

DFS example

0

1

43

2

5

4

0

12

3

5

DFS example 2

0

1

4

3

2

5

6

7

8

9

0

1

3

4

7

8

9

2

5

6

● Can be easily implemented using a queue

○ For each node visited, add all of its neighbors to the queue

■ Vertices that have been seen but not yet visited are said to

be the fringe

○ Pop head of the queue to be the next visited vertex

● See example

BFS

BFS example

0

1

4

3

2

5

6

7

8

9

0

1

3

4

7

8

2

5

Q

1

2

3

4

5

6

7

9

6
8

9

● If the graph is connected:

○ dfs()/bfs() is called only once and returns a spanning tree

● Else:

○ A loop in the wrapper function will have to continually call

dfs()/bfs() while there are still unseen vertices

○ Each call will yield a spanning tree for a connected component

of the graph

DFS and BFS would be called from a wrapper function

● BFS traversals can further be used to determine the

shortest path between two vertices

Shortest paths

● At a high level, DFS and BFS have the same runtime
○ Each node must be seen and then visited, but the order will

differ between the two approaches

● Adjacency matrix
○ Θ(v) to consider all neighbors

■ To traverse a row/column of the matrix
■ Doing this for each of v vertices leads to Θ(v2) runtime

● Adjacency list
○ Must consider the neighbor list of each node in the array

■ So, we must visit every node in the whole adjacency list
● Θ(v + e)

○ Why not just e?

Analysis of graph traversals

DFS pre-order traversal

DFS in-order traversal

DFS post-order traversal

● A biconnected graph has at least 2 distinct paths (no

common edges or vertices) between all vertex pairs

● Any graph that is not biconnected has one or more

articulation points

○ Vertices, that, if removed, will separate the graph

● Any graph that has no articulation points is biconnected

○ Thus we can determine that a graph is biconnected if we look

for, but do not find, any articulation points

Biconnected graphs

● Variation on DFS
● Consider building up the spanning tree

○ Have it be directed

○ Create “back edges” when considering a node that has already
been visited in constructing the spanning tree

○ Label each vertex v with with two numbers:
■ num(v) = pre-order traversal order

■ low(v) = lowest-numbered vertex reachable from v using 0

or more spanning tree edges and then at most one back
edge
● Min of:

○ num(v)
○ Lowest num(w) of all back edges (v, w)
○ Lowest low(w) of all spanning tree edges (v, w)

Finding articulation points

Finding articulation points example

0

1

43

2

5 4
0

0
1

1
2

2
3

3
4

5
5

0

0

0

0

0

5

● If any (non-root) vertex v has some child w such that

low(w) ≥ num(v), v is an articulation point

● What about if we start at an articulation point?

○ If the root of the spanning tree has more than one child, it is

an articulation point

So where are the articulation points?

