CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Graphs

Graphs

- A graph G = (V, E)
 - \circ $\,$ Where V is a set of vertices
 - E is a set of edges connecting vertex pairs
- Example:

• V = {0, 1, 2, 3, 4, 5}

 $\circ \quad \mathsf{E} = \{(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)\}$

• Can be used to model many different scenarios

Some definitions

- Undirected graph
 - Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
 - Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, also called "neighbors"
 - Vertices connected by an edge

Graph sizes

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
 - Minimum value of e?
 - Definition doesn't necessitate that there are any edges...
 - So, 0
 - Maximum of e?
 - Are self edges allowed?
 - Directed graph? (We'll assume self edges)
 - v vertices each with edges to v vertices
 - v²
 - Undirected graph? (We'll assume NO self edges)
 - v vertices with edges to v-1 vertices
 - BUT remember for undirected, (1, 2) == (2, 1)

•
$$v(v - 1) / 2$$

• (v² - v) / 2

More definitions

- A graph is considered *sparse* if:
 - o e <= v lg v
- A graph is considered *dense* as it approaches the maximum number of edges
 - $e = v^2 \epsilon$ for directed
 - \circ e = ((v² v) / 2) ε for undirected
- A *complete* graph has the maximum number of edges

Representing graphs

- Typically, yes. Different spatial representations of the same vertices/edges are considered the same graph.
- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
 - What operations would we want to perform on these lists?

Using an adjacency matrix

- Rows/columns are vertex labels
 - M[i][j] = 1 if (i, j) ∈ E
 - M[i][j] = 0 if (i, j) ∉ E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

• Pros?

- Easy to use/intuitive
- Runtime for checking edge existence?

- Cons?
 - Memory
 - Time to initialize
 - Time to find neighbors of a vertex

Adjacency lists

- Array of neighbor lists
 - A[i] contains neighbors of vertex i
- See example
- Pros?
 - Memory
 - Time to find the neighbors of a node
- Cons?
 - Memory
 - Time to check edge existence

- Adjacency matrix is better for dense graphs
- Adjacency list is better for sparse graphs

Even more definitions

- Path
 - A sequence of adjacent vertices
- Simple Path
 - A path in which no vertices are repeated
- Simple Cycle
 - A simple path with the same first and last vertex
- Connected Graph
 - A graph in which a path exists between all vertex pairs
- Connected Component
 - Connected subgraph of a graph
- Acyclic Graph
 - A graph with no cycles
- Tree
 - ?
 - A connected, acyclic graph
 - Has exactly v-1 edges

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Depth-first search (DFS)
 - "Dive" as deep as possible into the graph first
 - Branch when necessary
 - Breadth-first search (BFS)
 - Search all directions evenly
 - I.e., from i, visit all of i's neighbors, then all of their neighbors, etc.

- Already seen and used this throughout the term
 - For tries...
 - For Huffman encoding...
- Can be easily implemented recursively
 - For each node, visit first unseen neighbor
 - Backtrack at dead ends (i.e., nodes with no unseen neighbors)
 - Try next unseen neighbor after backtracking

DFS example

DFS example 2

- Can be easily implemented using a queue
 - For each node visited, add all of its neighbors to the queue
 - Vertices that have been seen but not yet visited are said to

be the *fringe*

- Pop head of the queue to be the next visited vertex
- See example

BFS example

DFS and BFS would be called from a wrapper function

- If the graph is connected:
 - dfs()/bfs() is called only once and returns a *spanning tree*
- Else:
 - A loop in the wrapper function will have to continually call dfs()/bfs() while there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph

Shortest paths

• BFS traversals can further be used to determine the *shortest path* between two vertices

Analysis of graph traversals

- At a high level, DFS and BFS have the same runtime
 - Each node must be seen and then visited, but the order will differ between the two approaches
- Adjacency matrix
 - Θ(v) to consider all neighbors
 - To traverse a row/column of the matrix
 - Doing this for each of v vertices leads to $\Theta(v^2)$ runtime
- Adjacency list
 - Must consider the neighbor list of each node in the array
 - So, we must visit every node in the whole adjacency list
 - Θ(v + e)
 - Why not just e?

DFS pre-order traversal

DFS in-order traversal

DFS post-order traversal

Biconnected graphs

- A *biconnected graph* has at least 2 distinct paths (no common edges or vertices) between all vertex pairs
- Any graph that is not biconnected has one or more *articulation points*
 - Vertices, that, if removed, will separate the graph
- Any graph that has no articulation points is biconnected
 - Thus we can determine that a graph is biconnected if we look
 for, but do not find, any articulation points

Finding articulation points

- Variation on DFS
- Consider building up the spanning tree
 - Have it be directed
 - Create "back edges" when considering a node that has already been visited in constructing the spanning tree
 - Label each vertex v with with two numbers:
 - num(v) = pre-order traversal order
 - low(v) = lowest-numbered vertex reachable from v using 0 or more spanning tree edges and then at most one back edge
 - Min of:
 - o num(v)
 - Lowest num(w) of all back edges (v, w)
 - Lowest low(w) of all spanning tree edges (v, w)

Finding articulation points example

So where are the articulation points?

- If any (non-root) vertex v has some child w such that $low(w) \ge num(v)$, v is an articulation point
- What about if we start at an articulation point?
 - If the root of the spanning tree has more than one child, it is

an articulation point