
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Priority Queues

● Primary operations they needed:

○ Insert

○ Find item with highest priority

■ E.g., findMin() or findMax()

○ Remove an item with highest priority

■ E.g., removeMin() or removeMax()

● How do we implement these operations?

○ Simplest approach: arrays

We mentioned priority queues in building Huffman tries

● Insert

● Find

● Remove

● Total runtime for n inserts and deletes?

Unsorted array PQ

● Insert

● Find

● Remove

● Total runtime for n inserts and deletes?

Sorted array PQ

● What about a binary search tree?

○ Insert

○ Find

○ Remove

○ Average case vs. Worst case

So what other options do we have?

● Our find and remove operations only need the highest

priority item, not to find/remove any item

○ Can we take advantage of this to improve our runtime?

Is a BST overkill?

● A heap is complete binary tree such that for each node T in

the tree:

○ T.val is of a higher priority than T.right_child.val

○ T.val is of a higher priority than T.left_child.val

● It does not matter how T.left_child.val relates to

T.right_child.val

○ This is a relaxation of the approach needed by a BST

The heap

The heap property

● Find is easy

○ Simply the root of the tree

■ Θ(1)

● Remove and insert are not quite so trivial

○ The tree is modified and the heap property must be

maintained

Heap PQ runtimes

● Add a new node at the next available leaf

● Push the new node up the tree until it is supporting the

heap property

Heap insert

Min heap insert

7

42 37

5

5

42

7

5

8 15

15

37 1215

12

9

9

42 3

3

9

3

7

3

5

Insert:
7, 42, 37, 5, 8, 15, 12, 9, 3

● Tricky to delete root…

○ So let's simply overwrite the root with the value of the last leaf

and delete the last leaf

■ But then the root is violating the heap property…

● So we push the root down the tree until it is supporting the

heap property

Heap remove

Min heap removal

8 37 15

12

42 9

7

3

5

9

9

5

9

8

NO!

7

9

427

428

42

● Find

○ Θ(1)

● Insert and remove

○ Height of a complete binary tree is lg n

○ At most, upheap and downheap operations traverse the

height of the tree

○ Hence, insert and remove are Θ(lg n)

Heap runtimes

● Simply implement tree nodes like for BST

○ This requires overhead for dynamic node allocation

○ Also must follow chains of parent/child relations to traverse

the tree

● Note that a heap will be a complete binary tree…

○ We can easily represent a complete binary tree using an array

Heap implementation

● Number nodes row-wise starting at 0
● Use these numbers as index values in the array
● Now, for node at index i

○ parent(i) = ⌊(i - 1) / 2⌋
○ left_child(i) = 2i + 1
○ right_child(i) = 2i + 2

Storing a heap in an array

For arrays indexed
from 0

Heap Sort

● Heapify the numbers
○ MAX heap to sort ascending
○ MIN heap to sort descending

● “Remove” the root
○ Don’t actually delete the leaf node

● Consider the heap to be from 0 .. length - 1
● Repeat

3 5 12 7 8 37 15 42 939 95 97 5427 428 42 715 158 9 1537 8379 371542 912 4237 12371542 1537 4242 37

● Runtime:

○ Worst case:

■ n log n

● In-place?

○ Yes

● Stable?

○ No

Heap sort analysis

● What if we want to update an Object?

○ What is the runtime to find an arbitrary item in a heap?

■ Θ(n)

■ Hence, updating an item in the heap is Θ(n)

○ Can we improve of this?

■ Back the PQ with something other than a heap?

■ Develop a clever work around?

Storing Objects in PQ

● Maintain a second data structure that maps item IDs to each

item’s current position in the heap

● This creates an indexable PQ

Indirection

● Let's say I'm shopping for a new video card and want to
build a heap to help me keep track of the lowest price
available from different stores.

● Keep objects of the following type in the heap:

Indirection example setup

class CardPrice implements Comparable<CardPrice>{

public String store;

public double price;

public CardPrice(String s, double p) { … }

public int compareTo(CardPrice o) {

if (price < o.price) { return -1; }

else if (price > o.price) { return 1; }

else { return 0; }

}

}

"NE":0

Indirection example

● n = new CardPrice("NE", 333.98);
● a = new CardPrice("AMZN", 339.99);
● x = new CardPrice("NCIX", 338.00);
● b = new CardPrice("BB", 349.99);

n a x b

Indirection

"AMZN":1

"NCIX":2

"BB":3

● Update price for NE: 340.00

nx

"NE":2

"NCIX":0

● Update price for NCIX: 345.00

a x

"AMZN":0

"NCIX":1

● Update price for BB: 200.00

xb

"BB":1

"NCIX":3

"AMZN":1

"BB":0

ab

