
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

String Pattern Matching

● Have a pattern string p of length m

● Have a text string a of length n

● Can we find an index i of string a such that each of the m

characters in the substring of a starting at i matches each

character in p

○ Example: can we find the pattern “fox” in the text “the quick

brown fox jumps over the lazy dog”?

■ Yes! At index 16 of the text string!

General idea

● BRUTE FORCE

○ start at the beginning of both pattern and text

○ compare characters left to right

○ mismatch?

○ start again at the 2nd character of the text and the beginning

of the pattern...

Simple approach

public static int bf_search(String pat, String txt) {

int m = pat.length();

int n = txt.length();

for (int i = 0; i <= n - m; i++) {

int j;

for (j = 0; j < m; j++) {

if (txt.charAt(i + j) != pat.charAt(j))

break;

}

if (j == m)

return i; // found at offset i

}

return n; // not found

}

Brute force code

● Runtime?

○ What does the worst case look like?

■ a = XXY

■ p = XXXXY

○ m (n - m + 1)

■ Θ(nm) if n >> m

○ Is the average case runtime any better?

■ Assume we mostly miss on the first pattern character

■ Θ(n + m)

● Θ(n) if n >> m

Brute force analysis

● Improve worst case

○ Theoretically very interesting

○ Practically doesn’t come up that often for human language

● Improve average case

○ Much more practically helpful

■ Especially if we anticipate searching through large files

Where do we improve?

Knuth

First: improving the worst case

Morris Pratt

Worked together

Discovered the same algorithm independently

Jointly published in 1976

● Knuth Morris Pratt algorithm (KMP)

● Goal: avoid backing up in the text string on a mismatch

● Main idea: In checking the pattern, we learned something
about the characters in the text, take advantage of this
knowledge to avoid backing up

First: improving the worst case

● Knuth Morris Pratt algorithm (KMP)
● Goal: avoid backing up in the text string on a mismatch
● Main idea: In checking the pattern, we learned something

about the characters in the text, take advantage of this
knowledge to avoid backing up

First: improving the worst case

A B A A A A B A A A A A A A A A
text

B A A A A A A A A A
pattern

What brute-force does when a mismatch is found.

● Knuth Morris Pratt algorithm (KMP)
● Goal: avoid backing up in the text string on a mismatch
● Main idea: In checking the pattern, we learned something

about the characters in the text, take advantage of this
knowledge to avoid backing up

First: improving the worst case

A B A A A A B A A A A A A A A A

B A A A A A A A A A

What brute-force does when a mismatch is found.

● Knuth Morris Pratt algorithm (KMP)
● Goal: avoid backing up in the text string on a mismatch
● Main idea: In checking the pattern, we learned something

about the characters in the text, take advantage of this
knowledge to avoid backing up

First: improving the worst case

A B A A A A B A A A A A A A A A

B A A A A A A A A A

B A A A A A A A A A

Brute force
backs up to i+1

What brute-force does when a mismatch is found.

● Knuth Morris Pratt algorithm (KMP)
● Goal: avoid backing up in the text string on a mismatch
● Main idea: In checking the pattern, we learned something

about the characters in the text, take advantage of this
knowledge to avoid backing up

First: improving the worst case

A B A A A A B A A A A A A A A A

B A A A A A A A A A

B A A A A A A A A A

B A A A A A A A A A

Brute force
backs up to i+1

What brute-force does when a mismatch is found.

● Actually, build a deterministic finite-state automata (DFA)

storing information about the pattern

○ From a given state in searching through the pattern, if you

encounter a mismatch, how many characters currently match

from the beginning of the pattern

How do we keep track of text processed?

DFA example

0

Pattern:
ABABAC

1
A

2
B

3
A

5
A

4
B

6
C

B,C,D

C,D
B,C,D

B,C,D
C,D

D

A A
A

B

Representing the DFA in code

● DFA can be represented as a 2D array:

○ dfa[cur_text_char][pattern_counter] = new_pattern_counter

■ Storage needed?

● mR

0 1 2 3 4 5

A 1 1 3 1 5 1

B 0 2 0 4 0 4

C 0 0 0 0 0 6

D 0 0 0 0 0 0

public int kmp_search(String pat, String txt) {
int M = pat.length();
int N = txt.length();
int i, j;
for (i = 0, j = 0; i < N && j < M; i++)

j = dfa[txt.charAt(i)][j];
if (j == M) return i - M; // found
return N; // not found

}

KMP code

● Runtime?

● What if we compare starting at the end of the pattern?
○ a = ABCDVABCDWABCDXABCDYABCDZ
○ p = ABCDE
○ V does not match E

■ Further V is nowhere in the pattern…
■ So skip ahead m positions with 1 comparison!

● Runtime?
○ In the best case, n/m

● When searching through text with a large alphabet, will
often come across characters not in the pattern.
○ One of Boyer Moore’s heuristics takes advantage of this fact

■ Mismatched character heuristic

Another approach: Boyer Moore

● How well it works depends on the pattern and text at hand
○ What do we do in the general case after a mismatch?

■ Consider:
● a = ATGGTGTXGX
● p = XGX

■ If mismatched character does appear in p, need to “slide”
to the right to the next occurrence of that character in p
● Requires us to pre-process the pattern

○ Create a right array

Missed character heuristic

for all i right[i] = -1;

for (int j = 0; j < m; j++)

right[p.charAt(j)] = j;

Text: A T G G T G T X G X

Missed character heuristic example

X G X

X G X

X G X

X G X

X G X

Pattern: X G X

right = [-1, -1, …, 1, …, 2, ...]

G X

● What does the worst case look like?

○ Runtime:

■ Θ(nm)

● Same as brute force!

● This is why missed character is only one of Boyer Moore’s

heuristics

○ The works similarly to KMP

● See BoyerMoore.java

Runtime for missed character

● Hashing was cool, let's try using that

Another approach

public static int hash_search(String pat, String txt) {

int m = pat.length();

int n = txt.length();

int pat_hash = h(pat);

for (int i = 0; i <= n - m; i++) {

if (h(txt.substring(i, i + m)) == pat_hash)

return i; // found!

}

return n; // not found

}

● Is it efficient?

○ Nope! Practically worse than brute force

■ Instead of nm character comparisons, we perform n

hashes of m character strings

● Can we make an efficient pattern matching algorithm based

on hashing?

Well that was simple

● Brought up during the hashing lecture

Horner’s method

public long horners_hash(String key, int m) {

long h = 0;

for (int j = 0; j < m; j++)
h = (R * h + key.charAt(j)) % Q;

return h;

}

● horners_hash(“abcd”, 4) =

○ “a” * R3 + “b” * R2 + “c” * R + “d” mod 4

● What about horners_hash(“bcde”, 4)?

● Let ai be a.charAt(i)

● Let xi be aiR
m-1 + ai+1Rm-2 + … + ai+m-1R0

● xi mod Q == horners_hash(a.substring(i, i+m), m)

● xi+1 will then be: (xi - aiR
m-1)R + ai+m

● xi+1 mod Q == horners_hash(a.substring(i+1, i+m+1), m)

● Hence, we can avoid redoing a lot of hash recomputation

Rabin Karp

● Note that we’re not storing any values in a hash table…

○ So increasing Q doesn’t affect memory utilization!

■ Make Q really big and the chance of a collision becomes

really small!

● But not 0…

● OK, so do a character by character comparison on a collision

just to be sure

○ Worst case runtime?

■ Back to brute force esque runtime...

What about collisions?

● Two options:

○ Do a character by character comparison after collision

■ Guaranteed correct

■ Probably fast

○ Assume a hash match means a substring match

■ Guaranteed fast

■ Probably correct

Assorted casinos

Las Vegas

Monte Carlo

