
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Hashing

● Search through a collection could be accomplished in Θ(1)

with relatively small memory needs?

● Lets try this:

○ Assume we have an array of length m (call it HT)

○ Assume we have a function h(x) that maps from our key space

to {0, 1, 2, …, m-1}

■ E.g., ℤ → {0, 1, 2, …, m-1} for integer keys

■ Let’s also assume h(x) is efficient to compute

● This is the basic premise of hash tables

Wouldn’t it be wonderful if...

● Insert:

i = h(x)

HT[i] = x

● Search:

i = h(x)

if (HT[i] == x) return true;

else return false;

● This is a very general, simple approach to a hash table

implementation

○ Where will it run into problems?

How do we search/insert with a hash map?

● Called a collision

What do we do if h(x) == h(y) where x != y?

● Yes, if the our keyspace is smaller than our hashmap

○ If |keyspace| < m, perfect hashing can be used

■ i.e., a hash function that maps every key to a distinct

integer < m

■ Note it can also be used if n < m and the keys to be

inserted are known in advance

● E.g., hashing the keywords of a programming language

during compilation

● If |keyspace| > m, collisions cannot be avoided

Can we ever guarantee collisions will not occur?

● Company has 500 employees

● Stores records using a hashmap with 1000 entries

● Employee SSNs are hashed to store records in the hashmap

○ Keys are SSNs, so |keyspace| == 109

● Specifically what keys are needed can’t be known in advance

○ Due to employee turnover

● What if one employee (with SSN x) is fired and replacement

has an SSN of y?

○ Can we design a hash function that guarantees h(y) does not

collide with the 499 other employees' hashed SSNs?

Consider an example

● Can we reduce the number of collisions?

○ Using a good hash function is a start

■ What makes a good hash function?

● Utilize the entire key

● Exploit differences between keys

● Uniform distribution of hash values should be produced

Living with collisions

● Hash list of classmates by phone number
○ Bad?

■ Use first 3 digits
○ Better?

■ Consider it a single int
■ Take that value modulo m

● Hash words
○ Bad?

■ Add up the ASCII values
○ Better?

■ Use Horner’s method to do modular hashing again
● See Section 3.4 of the text

Examples

● Base 10
○ 12345
○ = 1 * 104 + 2 * 103 + 3 * 102 + 4 * 101 + 5 * 100

● Base 2
○ 10100
○ = 1 * 24 + 0 * 23 + 1 * 22 + 0 * 21 + 0 * 20

● Base 16
○ BEEF3
○ = 11 * 164 + 14 * 163 + 14 * 162 + 15 * 161 + 3 * 160

● ASCII Strings
○ BEEF3
○ = 'B' * 2564 + 'E' * 2563 + 'E' * 2562 + 'F' * 2561 + '3' * 2560

○ = 66 * 2564 + 69 * 2563 + 69 * 2562 + 70 * 2561 + 51 * 2560

Horner's method

● Overall a good simple, general approach to implement a

hash map

● Basic formula:

○ h(x) = c(x) mod m

■ Where c(x) converts x into a (possibly) large integer

● Generally want m to be a prime number

○ Consider m = 100

○ Only the least significant digits matter

■ h(1) = h(401) = h(4372901)

Modular hashing

● We’ve done what we can to cut down the number of

collisions, but we still need to deal with them

● Collision resolution: two main approaches

○ Open Addressing

○ Closed Addressing

Back to collisions

● I.e., if a pigeon’s hole is taken, it has to find another

● If h(x) == h(y) == i

○ And x is stored at index i in an example hash table

○ If we want to insert y, we must try alternative indices

■ This means y will not be stored at HT[h(y)]

● We must select alternatives in a consistent and predictable

way so that they can be located later

Open Addressing

● Insert:
○ If we cannot store a key at index i due to collision

■ Attempt to insert the key at index i+1
■ Then i+2 …
■ And so on …
■ mod m
■ Until an open space is found

● Search:
○ If another key is stored at index i

■ Check i+1, i+2, i+3 … until
● Key is found
● Empty location is found
● We circle through the buffer back to i

Linear Probing

● h(x) = x mod 11
● Insert 14, 17, 25, 37, 34, 16, 26

Linear probing example

0 1 2 3 4 5 6 7 8 9 10

14 1725 3734 16 26

● Well, not quite…
● Consider the load factor α = n/m
● As α increases, what happens to hash table performance?
● Consider an empty table using a good hash function

○ What is the probability that a key x will be inserted into any
index in the hash table?
■ 1/m

● Consider a table that has a cluster of c consecutive indices
occupied
○ What is the probability that a key x will be inserted into the

index directly after the cluster?
■ (c + 1)/m

Alright! We solved collisions!

● We must make sure that even after a collision, all of the

indices of the hash table are possible for a key

○ Probability of filled locations need to be distributed

throughout the table

Avoiding clustering

● After a collision, instead of attempting to place the key x in

i+1 mod m, look at i+h2(x) mod m

○ h2() is a second, different hash function

■ Should still follow the same general rules as h() to be

considered good, but needs to be different from h()

● h(x) == h(y) AND h2(x) == h2(y) should be very unlikely

○ Hence, it should be unlikely for two keys to use the

same increment

Double hashing

● h(x) = x mod 11

● h2(x) = (x mod 7) +1
● Insert 14, 17, 25, 37, 34, 16, 26

Double hashing

0 1 2 3 4 5 6 7 8 9 10

14 17 253734 16 26

● Insert 2401

● Second hash function cannot map a value to 0

● You should try all indices once before trying one twice

● Were either of these issues for linear probing?

A few extra rules for h2()

● Meaning n approaches m…

● Both linear probing and double hashing degrade to Θ(n)

○ How?

■ Multiple collisions will occur in both schemes

■ Consider inserts and misses…

● Both continue until an empty index is found

○ With few indices available, close to m probes will need

to be performed

■ Θ(m)

○ n is approaching m, so this turns out to be Θ(n)

As α → 1...

● Must keep a portion of the table empty to maintain

respectable performance

○ For linear hashing ½ is a good rule of thumb

■ Can go higher with double hashing

Open addressing issues

● Most commonly done with separate chaining

○ I.e., if a pigeon’s hole is taken, it lives with a roommate

○ Create a linked-list of keys at each index in the table

■ As with DLBs, performance depends on chain length

● Which is determined by α and the quality of the hash

function

Closed addressing

● Closed-addressing hash tables are fast and efficient for a

large number of applications

In general...

