CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Hashing

Wouldn't it be wonderful if...

- Search through a collection could be accomplished in Θ(1) with relatively small memory needs?
- Lets try this:
 - Assume we have an array of length m (call it HT)
 - Assume we have a function h(x) that maps from our key space to {0, 1, 2, ..., m-1}
 - E.g., $\mathbb{Z} \rightarrow \{0, 1, 2, ..., m-1\}$ for integer keys
 - Let's also assume h(x) is efficient to compute
- This is the basic premise of *hash tables*

How do we search/insert with a hash map?

- Insert:
 - i = h(x)
 - HT[i] = x
- Search:

```
i = h(x)
if (HT[i] == x) return true;
else return false;
```

- This is a very general, simple approach to a hash table implementation
 - Where will it run into problems?

What do we do if h(x) == h(y) where x != y?

• Called a *collision*

Can we ever guarantee collisions will not occur?

- Yes, if the our keyspace is smaller than our hashmap
 - If |keyspace| < m, *perfect hashing* can be used
 - i.e., a hash function that maps every key to a distinct integer < m
 - Note it can also be used if n < m and the keys to be inserted are known in advance
 - E.g., hashing the keywords of a programming language during compilation
- If |keyspace| > m, collisions cannot be avoided

Consider an example

- Company has 500 employees
- Stores records using a hashmap with 1000 entries
- Employee SSNs are hashed to store records in the hashmap
 - Keys are SSNs, so |keyspace| == 10^9
- Specifically what keys are needed can't be known in advance
 - Due to employee turnover
- What if one employee (with SSN x) is fired and replacement has an SSN of y?
 - Can we design a hash function that guarantees h(y) does not collide with the 499 other employees' hashed SSNs?

Living with collisions

- Can we reduce the number of collisions?
 - Using a good hash function is a start
 - What makes a good hash function?
 - Utilize the entire key
 - Exploit differences between keys
 - Uniform distribution of hash values should be produced

Examples

- Hash list of classmates by phone number
 - Bad?
 - Use first 3 digits
 - Better?
 - Consider it a single int
 - Take that value modulo m
- Hash words
 - Bad?
 - Add up the ASCII values
 - Better?
 - Use Horner's method to do modular hashing again
 - See Section 3.4 of the text

Horner's method

- Base 10
 - o **12345**
 - $\circ = 1 * 10^4 + 2 * 10^3 + 3 * 10^2 + 4 * 10^1 + 5 * 10^0$
- Base 2
 - o **10100**
 - $\circ = 1 * 2^4 + 0 * 2^3 + 1 * 2^2 + 0 * 2^1 + 0 * 2^0$
- Base 16
 - BEEF3
 - \circ = 11 * 16⁴ + 14 * 16³ + 14 * 16² + 15 * 16¹ + 3 * 16⁰
- ASCII Strings
 - BEEF3
 - $\circ = 'B' * 256^4 + 'E' * 256^3 + 'E' * 256^2 + 'F' * 256^1 + '3' * 256^0$
 - $\circ = 66 * 256^4 + 69 * 256^3 + 69 * 256^2 + 70 * 256^1 + 51 * 256^0$

Modular hashing

- Overall a good simple, general approach to implement a hash map
- Basic formula:
 - $h(x) = c(x) \mod m$
 - Where c(x) converts x into a (possibly) large integer
- Generally want m to be a prime number
 - \circ Consider m = 100
 - Only the least significant digits matter
 - h(1) = h(401) = h(4372901)

Back to collisions

- We've done what we can to cut down the number of collisions, but we still need to deal with them
- Collision resolution: two main approaches
 - Open Addressing
 - Closed Addressing

Open Addressing

- I.e., if a pigeon's hole is taken, it has to find another
- If h(x) == h(y) == i
 - And x is stored at index i in an example hash table
 - If we want to insert y, we must try alternative indices
 - This means y will not be stored at HT[h(y)]
 - We must select alternatives in a consistent and predictable

way so that they can be located later

Linear Probing

- Insert:
 - If we cannot store a key at index i due to collision
 - Attempt to insert the key at index i+1
 - Then i+2 ...
 - And so on ...
 - mod m
 - Until an open space is found
- Search:
 - If another key is stored at index i
 - Check i+1, i+2, i+3 ... until
 - Key is found
 - Empty location is found
 - We circle through the buffer back to i

Linear probing example

- h(x) = x mod 11
- Insert 14, 17, 25, 37, 34, 16, 26

0	1	2	3	4	5	6	7	8	9	10
	34		14	25	37	17	16	26		

Alright! We solved collisions!

- Well, not quite...
- Consider the *load factor* $\alpha = n/m$
- As α increases, what happens to hash table performance?
- Consider an empty table using a good hash function
 - What is the probability that a key x will be inserted into any index in the hash table?
 - 1/m
- Consider a table that has a cluster of c consecutive indices occupied
 - What is the probability that a key x will be inserted into the index directly after the cluster?
 - (c + 1)/m

Avoiding clustering

- We must make sure that even *after* a collision, all of the indices of the hash table are possible for a key
 - Probability of filled locations need to be distributed
 - throughout the table

Double hashing

- After a collision, instead of attempting to place the key x in i+1 mod m, look at i+h2(x) mod m
 - h2() is a second, different hash function
 - Should still follow the same general rules as h() to be considered good, but needs to be different from h()
 - h(x) == h(y) AND h2(x) == h2(y) should be very unlikely
 - Hence, it should be unlikely for two keys to use the same increment

Double hashing

- h(x) = x mod 11
- $h_2(x) = (x \mod 7)$
- Insert 14, 17, 25, 37, 34, 16, 26

0	1	2	3	4	5	6	7	8	9	10
	34		14	37	16	17		25		26

• Insert 2401

A few extra rules for h2()

- Second hash function cannot map a value to 0
- You should try all indices once before trying one twice
- Were either of these issues for linear probing?

As $\alpha \rightarrow 1...$

- Meaning n approaches m...
- Both linear probing and double hashing degrade to Θ(n)
 - How?
 - Multiple collisions will occur in both schemes
 - Consider inserts and misses...
 - Both continue until an empty index is found
 - With few indices available, close to m probes will need to be performed
 - Θ(m)
 - \circ n is approaching m, so this turns out to be $\Theta(n)$

Open addressing issues

- Must keep a portion of the table empty to maintain respectable performance

 - \circ $\,$ For linear hashing $\frac{1}{2}$ is a good rule of thumb
 - Can go higher with double hashing

Closed addressing

- Most commonly done with separate chaining
 - I.e., if a pigeon's hole is taken, it lives with a roommate
 - Create a linked-list of keys at each index in the table
 - As with DLBs, performance depends on chain length
 - Which is determined by α and the quality of the hash
 - function

 Closed-addressing hash tables are fast and efficient for a large number of applications