CS/COE 1501

www.cs.pitt.edu/~lipschultz/cs1501/

Hashing

Wouldn't it be wonderful if...

- Search through a collection could be accomplished in $\Theta(1)$ with relatively small memory needs?
- Lets try this:
- Assume we have an array of length m (call it HT)
- Assume we have a function $h(x)$ that maps from our key space to $\{0,1,2, \ldots, m-1\}$
- E.g., $\mathbb{Z} \rightarrow\{0,1,2, \ldots, m-1\}$ for integer keys
- Let's also assume $h(x)$ is efficient to compute
- This is the basic premise of hash tables

How do we search/insert with a hash map?

- Insert:
$i=h(x)$
$\mathrm{HT}[\mathrm{i}]=\mathrm{x}$
- Search:
$i=h(x)$
if (HT[i] == x) return true;
else return false;
- This is a very general, simple approach to a hash table implementation
- Where will it run into problems?

What do we do if $h(x)==h(y)$ where $x!=y$?

- Called a collision

Can we ever guarantee collisions will not occur?

- Yes, if the our keyspace is smaller than our hashmap
- If |keyspace | < m, perfect hashing can be used
- i.e., a hash function that maps every key to a distinct integer < m
- Note it can also be used if $\mathrm{n}<\mathrm{m}$ and the keys to be inserted are known in advance
- E.g., hashing the keywords of a programming language during compilation
- If |keyspace| > m, collisions cannot be avoided

Consider an example

- Company has 500 employees
- Stores records using a hashmap with 1000 entries
- Employee SSNs are hashed to store records in the hashmap
- Keys are SSNs, so |keyspace $\mid==10^{9}$
- Specifically what keys are needed can't be known in advance - Due to employee turnover
- What if one employee (with SSN x) is fired and replacement has an SSN of y ?
- Can we design a hash function that guarantees $h(y)$ does not collide with the 499 other employees' hashed SSNs?

Living with collisions

- Can we reduce the number of collisions?
- Using a good hash function is a start
- What makes a good hash function?
- Utilize the entire key
- Exploit differences between keys
- Uniform distribution of hash values should be produced

Examples

- Hash list of classmates by phone number
- Bad?
- Use first 3 digits
- Better?
- Consider it a single int
- Take that value modulo m
- Hash words
- Bad?
- Add up the ASCII values
- Better?
- Use Horner's method to do modular hashing again
- See Section 3.4 of the text

Horner's method

- Base 10
- 12345
- $=1 * 10^{4}+2 * 10^{3}+3 * 10^{2}+4 * 10^{1}+5 * 10^{0}$
- Base 2
- 10100
- $=1$ * $2^{4}+0 * 2^{3}+1 * 2^{2}+0 * 2^{1}+0 * 2^{0}$
- Base 16
- BEEF3
- $=11 * 16^{4}+14 * 16^{3}+14 * 16^{2}+15 * 16^{1}+3 * 16^{0}$
- ASCII Strings
- BEEF3
- = 'B' * $256^{4}+$ 'E' * $256^{3}+$ 'E' * $256^{2}+$ 'F' * $256^{1}+$ '3' * 256^{0}
- $=66 * 256^{4}+69 * 256^{3}+69 * 256^{2}+70 * 256^{1}+51 * 256^{0}$

Modular hashing

- Overall a good simple, general approach to implement a hash map
- Basic formula:
- $h(x)=c(x) \bmod m$
- Where $c(x)$ converts x into a (possibly) large integer
- Generally want m to be a prime number
- Consider $m=100$
- Only the least significant digits matter
- $\mathrm{h}(1)=\mathrm{h}(401)=\mathrm{h}(4372901)$

Back to collisions

- We've done what we can to cut down the number of collisions, but we still need to deal with them
- Collision resolution: two main approaches
- Open Addressing
- Closed Addressing

Open Addressing

- I.e., if a pigeon's hole is taken, it has to find another
- If $h(x)==h(y)==i$
- And x is stored at index i in an example hash table
- If we want to insert y, we must try alternative indices
- This means y will not be stored at HT[h(y)]
- We must select alternatives in a consistent and predictable way so that they can be located later

Linear Probing

- Insert:
- If we cannot store a key at index i due to collision
- Attempt to insert the key at index i+1
- Then $\mathrm{i}+2 \ldots$
- And so on ...
- mod m
- Until an open space is found
- Search:
- If another key is stored at index i
- Check $\mathrm{i}+1, \mathrm{i}+2, \mathrm{i}+3 \ldots$ until
- Key is found
- Empty location is found
- We circle through the buffer back to i

Linear probing example

- $h(x)=x \bmod 11$

Insert 14, 17, 25, 37, 34, 16, 26

0	1	2	3	4	5	6	7	8	9	10
	34		14	25	37	17	16	26		

Alright! We solved collisions!

- Well, not quite...
- Consider the load factor $\alpha=n / m$
- As a increases, what happens to hash table performance?
- Consider an empty table using a good hash function
- What is the probability that a key x will be inserted into any index in the hash table?
- $1 / \mathrm{m}$
- Consider a table that has a cluster of c consecutive indices occupied
- What is the probability that a key x will be inserted into the index directly after the cluster?
- ($c+1$)/m

Avoiding clustering

- We must make sure that even after a collision, all of the indices of the hash table are possible for a key
- Probability of filled locations need to be distributed throughout the table

Double hashing

- After a collision, instead of attempting to place the key x in i+1 mod m, look at i+h2(x) mod m
- h2() is a second, different hash function
- Should still follow the same general rules as $h()$ to be considered good, but needs to be different from $h()$
- $h(x)==h(y)$ AND $h 2(x)==h 2(y)$ should be very unlikely
- Hence, it should be unlikely for two keys to use the same increment

Double hashing

- $h(x)=x \bmod 11$
- $h 2(x)=(x \bmod 7)$
- Insert $14,17,25,37,34,16,26$

0	1	2	3	4	5	6	7	8	9	10
	34		14	37	16	17		25		26

- Insert 2401

A few extra rules for h2()

- Second hash function cannot map a value to 0
- You should try all indices once before trying one twice
- Were either of these issues for linear probing?

As $\alpha \rightarrow 1 \ldots$

- Meaning n approaches $\mathrm{m} .$.
- Both linear probing and double hashing degrade to $\Theta(n)$
- How?
- Multiple collisions will occur in both schemes

■ Consider inserts and misses...

- Both continue until an empty index is found
- With few indices available, close to m probes will need to be performed
- $\Theta(m)$
- n is approaching m, so this turns out to be $\Theta(n)$

Open addressing issues

- Must keep a portion of the table empty to maintain respectable performance
- For linear hashing $1 / 2$ is a good rule of thumb
- Can go higher with double hashing

Closed addressing

- Most commonly done with separate chaining
- I.e., if a pigeon's hole is taken, it lives with a roommate
- Create a linked-list of keys at each index in the table
- As with DLBs, performance depends on chain length
- Which is determined by α and the quality of the hash
function

In general...

- Closed-addressing hash tables are fast and efficient for a large number of applications

