
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Searching

● Abstract structures that link keys to values

○ Key is used to search the data structure for a value

○ Described as a class in the text, but probably more accurate to

think of the concept of a symbol table in general as an

interface

■ Key functions:

● put()

● contains()

Symbol tables

2

● Given a collection of keys C, how do we search for the value
associated with a given key k?
○ Store collection in an array

■ Unsorted
■ Sorted

○ Linked list
■ Unsorted
■ Sorted

○ Binary search tree

● Differences?
● Runtimes?

Review: Searching through a collection

3

● BinarySearchST.java and BST.java present symbol tables

based on sorted arrays and binary search trees, respectively

● Can we do better than these?

● Both methods depend on comparisons against other keys

○ I.e., K is compared against other keys in the data structure

● 4 options at each node in a BST:

○ Node ref is null, K not found

○ K is equal to the current key, K is found

○ K is less than current key, continue to left child

○ K is greater than the current key, continue to right child

A closer look

4

● Instead of looking at less than/greater than, lets go left/right

based on the bits of the key, so we again have 4 options:

○ Node ref is null, K not found

○ K is equal to the current key, K is found

○ current bit of K is 0, continue to left child

○ current bit of K is 1, continue to right child

Digital Search Trees (DSTs)

5

Insert:

DST example

4

3

2

6

5

Search:

3

7

0100

0011

0010

0110

0101

0011

0111

4

0 1

3
10

6

10

2

0 1

5

10

6

● Runtime?

● We end up doing many comparisons against the full key,

can we improve on this?

Analysis of digital search trees

7

● Trie as in retrieve, pronounced the same as “try”

● Instead of storing keys as nodes in the tree, we store them

implicitly as paths down the tree

○ Interior nodes of the tree only serve to direct us according to

the bitstring of the key

○ Values can then be stored at the end of key’s bit string path

Radix search tries (RSTs)

8

Insert:

RST example

4

3

2

6

5

Search:

3

7

0100

0011

0010

0110

0101

0011

0111

VV V

0 1

V

0

0

1

1 0 1

V

0 1

0 1

0 1

9

● Runtime?

● Would this structure work as well for other key data types?

○ Characters?

○ Strings?

RST analysis

10

● In our binary-based Radix search trie, we considered one bit

at a time

● What if we applied the same method to characters in a

string?

○ What would this new structure look like?

● Let’s try inserting the following strings into an trie:

○ she, sells, sea, shells, by, the, sea, shore

Larger branching factor tries

11

Another trie example

s

h

e

l

l

s

b

y

t

h

e

e

a l

l

s

o

r

e

12

● Runtime?

Analysis

13

● Miss times

○ Require an average of logR(n) nodes to be examined

■ Where R is the size of the alphabet being considered

■ Proof in Proposition H of Section 5.2 of the text

○ Average # of checks with 220 keys in an RST?

○ With 220 keys in an R-way trie, assuming 8-bit ASCII?

Further analysis

14

● See TrieSt.java
○ Implements an R-way trie

● Basic node object:

Implementation Concerns

Where R is the branching factor

● Non-null val means we have traversed to a valid key

● Again, note that keys are not directly stored in the trie at all

15

R-way trie example

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

0

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Val:
Next

1
16

● Space!

○ Considering 8-bit ASCII, each node contains 28 references!

○ This is especially problematic as in many cases, a lot of this

space is wasted

■ Common paths or prefixes for example, e.g., if all keys

begin with “key”, thats 255*3 wasted references!

■ At the lower levels of the trie, most keys have probably

been separated out and reference lists will be sparse

So what’s the catch?

17

● Replace the .next array of the R-way trie with a linked-list
● How does this affect trie performance?

○ No wasted space!
○ But search/insert are now Θ(kR)

■ In the worst case, we have to iterate through all R
characters in the alphabet for each node

■ For implementations with a lot of sparse nodes are
expected, use a DLB
● Runtime will still be close to Θ(k) for sparse nodes

■ For dense nodes, stick with R-way tries

● If most of the alphabet is a valid reference for most nodes,
you won’t get a whole lot of space savings with DLBs

De La Briandais tries (DLBs)

18

DLB Example

S

H

E

^

E

L

L

S

^

A

^L

L

S

^

B

Y

^

H

E

^

T

19

● How does DLB performance differ from R-way tries?

● Which should you use?

DLB analysis

20

● So far we’ve continually assumed each search would only

look for the presence of a whole key, what about prefix

search as was needed for Boggle?

Searching

21

● This lecture does not present an exhaustive look at search

trees/tries, just the sampling that we’re going to focus on

● Many variations on these techniques exist and perform

quite well in different circumstances

○ Red/black BSTs

○ Ternary search Tries

○ R-way tries without 1-way branching

● See the table at the end of Section 5.2 of the text

Final notes

22

