
CS/COE 1501
www.cs.pitt.edu/~lipschultz/cs1501/

Sorting

● Given a list of n items, place the items in a given order

○ Ascending or descending

■ Numerical

■ Alphabetical

■ etc.

● First, we’ll review sort algorithms that fit into 3 classes:

○ Good
○ Bad
○ Ugly

The sorting problem

2

boolean less(Comparable v, Comparable w) {

return (v.compareTo(w) < 0);

}

void exch(Object[] a, int i, int j) {

Object swap = a[i];

a[i] = a[j];

a[j] = swap;

}

Prerequisites

3

● Simply go through the array comparing pairs of items, swap
them if they are out of order
○ Repeat until you make it through the array with 0 swaps

Bubble sort

void bubbleSort(Comparable[] a) {

boolean swapped;

do {

swapped = false;

for(int j = 1; j < a.length; j++) {

if (less(a[j], a[j-1]))

{ exch(a, j-1, j); swapped = true; }

}

} while(swapped);

}
4

Bubble sort example

5 3 4 10153 54 514131

SWAPPED!

5

“Improved” bubble sort

void bubbleSort(Comparable[] a) {

boolean swapped;

int to_sort = a.length;

do {

swapped = false;

for(int j = 1; j < to_sort; j++) {

if (less(a[j], a[j-1]))

{ exch(a, j-1, j); swapped = true; }

}

to_sort--;

} while(swapped);

}

6

● Runtime:
○ O(n2)

How bad is it?

"[A]lthough the techniques used in
the calculations [to analyze the
bubble sort] are instructive, the
results are disappointing since they
tell us that the bubble sort isn't
really very good at all."

Donald Knuth
The Art of Computer Programming

7

The Ugly - Bubble Sort

What is the most efficient way to sort a million 32-bit integers?

I think the bubble sort would be the wrong way to go.

8

● Look at each item in the array and push it as close the front
as it should go

The Bad - Insertion Sort

void insertionSort(Comparable[] a) {

int n = a.length;

for (int i=1; i<n; i++) {

for (int j=i; j>0 && less(a[j], a[j-1]); j--) {

exch(a, j, j-1);

}

}

}

9

Insertion sort example

5 3 4 101

i = 0, placing 5i = 1, placing 3i = 2, placing 4i = 3, placing 1i = 4, placing 10

3 54 51 51 41 3

10

Insertion sort model

void insertionSort(Comparable[] a) {

int n = a.length;

for (int i=1; i<n; i++) {

for (int j=i; j>0 && less(a[j], a[j-1]); j--) {

exch(a, j, j-1);

}

}

}

11

● Runtime:

○ O(n2)

■ … in the worst case

○ Average case?

■ O(n2)

● So why was bubble sort “Ugly”?

○ Practically, insertion sort will perform better

Insertion sort analysis

12

The Good - Merge Sort

● Divide and conquer

void sort(Comparable[] a, Comparable[] aux, int lo, int hi) {

if (hi <= lo) return;

int mid = lo + (hi - lo) / 2;

sort(a, aux, lo, mid);

sort(a, aux, mid + 1, hi);

merge(a, aux, lo, mid, hi);

}

13

Merge Sort trace

15 12 21 3 9 25 10 5

15 12 21 3 9 25 10 5

15 12 21 3 9 25 10 5

15 12 21 3 9 25 10 5

12 15 3 21

15 12 21 3

3 12 15 21

9 25

9 25

10 5

5 10

5 9 10 25

3 5 9 10 15 2112 25

14

Merging

merge(Comparable[] a, Comparable[] aux, int lo, int mid, int hi) {

for (int k = lo; k <= hi; k++) {

aux[k] = a[k];

}

int i = lo, j = mid+1;

for (int k = lo; k <= hi; k++) {

if (i > mid) a[k] = aux[j++];

else if (j > hi) a[k] = aux[i++];

else if (less(aux[j], aux[i])) a[k] = aux[j++];

else a[k] = aux[i++];

}

}

void

15

● Runtime:

○ O(n log n)

● So what’s the catch?

○ Now we need O(n) space available for the aux array

■ Sort does not occur in-place

Merge sort analysis

16

The Good - Quick Sort

● Choose a pivot value

● Place the pivot in the array such that all items at lower

indices are less than pivot, and all higher indices are greater

● Recurse for lesser indices and greater indices

void sort(Comparable[] a, int lo, int hi) {

if (hi <= lo) return;

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

}

17

The Good - Quick Sort

18

Partitioning for quick sort

int partition(Comparable[] a, int lo, int hi) {

int i = lo, j = hi + 1;

Comparable v = a[lo];

while (true) {

while (less(a[++i], v))

if (i == hi) break;

while (less(v, a[--j]))

if (j == lo) break;

if (i >= j) break;

exch(a, i, j);

}

exch(a, lo, j);

return j;

}

19

Partitioning example

44 75 23 43 55 12 64 77 33

lo hiv == 44

i j

7533 55124412

20

● Runtime?

● In-place?

Quick sort analysis

21

This implementation of quick sort is not stable

● Stable sorting maintains the relative ordering of tied values

22

● The problem of sorting cannot be solved using comparisons

with less than n log n time complexity

● See Proposition I in Chapter 2.2 of the text

Comparison sort runtime of O(n log n) is optimal

23

● Consider the following approach:

○ Look at the least-significant digit

○ Group numbers with the same digit

■ Maintain relative order

○ Place groups back in array together

■ I.e., all the 0’s, all the 1’s, all the 2’s, etc.

○ Repeat for increasingly significant digits

How can we sort without comparison?

24

● Runtime?

● In-place?

● Stable?

Radix sort analysis

25

● 1,000,000 32-bit integers don’t take up a whole lot of space

○ 4 MB

● What if we needed to sort 1TB of numbers?

○ Won’t all fit in memory…

○ We had been assuming we were performing internal sorts

■ Everything in memory

○ We now need to consider external sorting

■ Where we need to write to disk

Further thoughts on Eric Schmidt’s question...

26

● Read in amount of data that will fit in memory

● Sort it in place

○ I.e., via quick sort

● Write sorted chunk of data to disk

● Repeat until all data is stored in sorted chunks

● Merge chunks together

Hybrid merge sort

27

● Should we merge all chunks together at once?

○ Means fewer disk read/writes

■ Each merge pass reads/writes every value

○ But also more disk seeks

● Can we do parallel reads/writes to multiple disks?

● Can we use multiple CPUs/cores to speed up processing

External sort considerations

28

● What about when you have 1PB of data?

● In 2008, Google sorted 10 trillion 100 byte records on 4000

computers in 6 hours 2 minutes

● 48,000 hard drives were involved

○ At least 1 disk failed during each run of the sort

Large scale sorts

29

