
Scalably Scheduling Processes with Arbitrary Speedup Curves

Jeff Edmonds∗ Kirk Pruhs†

“With multi-core it’s like we are throwing this
Hail Mary pass down the field and now we have
to run down there as fast as we can to see if
we can catch it.”
— David Patterson, UC Berkeley computer
science professor

Abstract

We give a scalable ((1+ǫ)-speed O(1)-competitive) non-
clairvoyant algorithm for scheduling jobs with sublinear
nondecreasing speed-up curves on multiple processors
with the objective of average response time.

1 Introduction

Computer chip designers are agreed upon the fact that
chips with hundreds to thousands of processors chips
will dominate the market in the next decade. The
founder of chip maker Tilera asserts that a corollary to
Moore’s law will be that the number of cores/processors
will double every 18 months [9]. Intel’s director of
microprocessor technology asserts that while processors
will get increasingly simple, software will need to evolve
more quickly than in the past to catch up [9]. In fact, it
is generally agreed that developing software to harness
the power of multiple processors is going to be a much
more difficult technical challenge than the development
of the hardware. In this paper, we consider one
such software technical challenge: developing operating
system algorithms/policies for scheduling processes with
varying degrees of parallelism on a multiprocessor.

We will consider the setting where n processes/jobs
arrive to the system over time. Job Ji arrives at time
ri, and has a work requirement wi. An operating sys-
tem scheduling algorithm generally needs to be non-
clairvoyant, that is, the algorithm does not require in-
ternal knowledge about jobs, say for example the jobs

∗York University, Canada. jeff@cs.yorku.ca. Supported in part

by NSERC Canada.
†Computer Science Department. University of Pittsburgh.

kirk@cs.pitt.edu. Supported in part by an IBM faculty award,

and by NSF grants CNS-0325353, CCF-0514058, IIS-0534531, and

CCF-0830558.

work requirement, since such information is generally
not available to the operating systems. So at each point
of time, a nonclairvoyant scheduling algorithm specifies
which job is run on each processor at that time know-
ing only when jobs arrived in the past, what the job
assignment was in the past, and when jobs completed
in the past. Job Ji completes after its wi units of work
has been processed. If a job Ji completes at time Ci,
then its response time is Ci − ri. In this paper we will
consider the schedule quality of service metric total re-
sponse time, which for a schedule S is defined to be
F (S) =

∑n
i=1(Ci − ri). For a fixed number of jobs, to-

tal response time is essentially equivalent to average re-
sponse time. Average response time is by far the mostly
commonly used schedule quality of service metric. Be-
fore starting our discussion of multiprocessor schedul-
ing, let us first review resource augmentation analysis
and single processor scheduling.

For our purposes here, resource augmentation anal-
ysis compares an online scheduling algorithm against an
offline optimal scheduler with slower processors. Online
scheduling algorithm A is s-speed c-competitive if

max
I

F (As(I))

F (Opt1(I))
≤ c

where As(I) is the schedule produced by algorithm A
with speed s processors on input I, and Opt1(I) is
the optimal total response time schedule for unit speed
processors on input I [7, 11]. A (1 + ǫ)-speed O(1)-
competitive algorithm is said to be scalable [12, 13].
(The constant in the competitive ratio will generally
depend upon ǫ.) To understand the motivation for
the definition of scalability consider the sort of quality
of service curve, such as the one in figure 1, that
is ubiquitous in server systems. That is, there is a
relatively modest degradation in quality of service as
the load increases until one nears some threshold —
this threshold is essentially the capacity of the system
— after which any increase in the load precipitously
degrades the quality of service provided by the server.
The concept of load is not so easy to formally define,
but generally reflects the number of users of the system.
Note that increasing the speed of a server by a factor
of s is essentially equivalent to lowering the load on the
server by a factor of s. A scalable algorithm is O(1)-

competitive on inputs I where Opt1(I) is approximately
Opt1+ǫ(I). Thus the performance curve of a scalable
scheduling algorithm should be at no worse than shown
in figure 1; That is, the scheduling algorithm should
scale reasonably well up to quite near the capacity of
the system.

OptimalOnline

Load

Average
Performance

Figure 1: The worst possible performance curve of an
(1+ǫ)-speed O(1)-competitive online algorithm.

The nonclairvoyant algorithm Shortest Elapsed
Time First (SETF) is scalable [7] for scheduling jobs
on a single processor for the objective of total response
time. SETF shares the processor equally among all pro-
cesses that have been processed the least to date. In-
tuitively, SETF gives priority to more recently arriving
jobs, until they have been processed as much as older
jobs, at which point all jobs are given equal priority. The
process scheduling algorithm used by most standard op-
erating systems, e.g. Unix, essentially schedules jobs in
way that is consistent with this intuition. No nonclair-
voyant scheduling algorithm can be O(1)-competitive
for total response time if compared against the optimal
schedule with the same speed [10]. The intuition is that
one can construct adversarial instances where the load
is essentially the capacity of the system, and there is no
time for the nonclairvoyant algorithm to recover from
any scheduling mistakes.

One important issue that arises when scheduling
jobs on a multiprocessor is that jobs can have widely
varying degrees of parallelism. That is, some jobs may
be be considerably sped up when simultaneously run on
to multiple processors, while some jobs may not be sped
up at all (this could be because the underlying algorithm
is inherently sequential in nature, or because the process
was not coded in a way to make it easily parallelizable).
To investigate this issue, we adopt the following general
model used in [3]. Each job consists of a sequence of
phases. Each phase consists of a positive real number
that denotes the amount of work in that phase, and a
speedup function that specifies the rate at which work
is processed in this phase as a function of the number
of processors executing the job. The speedup functions
may be arbitrary, other than we assume that they are

nondecreasing (a job doesn’t run slower if it is given
more processors), and sublinear (a job satisfies Brent’s
theorem, that is increasing the number of processors
doesn’t increase the efficiency of computation).

The most obvious scheduling algorithm in the mul-
tiprocessor setting is Equi-partition (Equi), which splits
the processors evenly among all processes. Equi is anal-
ogous to the Round Robin or Processor Sharing algo-
rithm in the single processor setting. In what is gener-
ally regarded as a quite complicated analysis, it is shown
in [3] that Equi is a (2+ǫ)-speed (2s

ǫ
)-competitive for to-

tal response time. It is also known that, even in the case
of a single processor, speed at least 2+ǫ is required in
order for Equi to be O(1)-competitive for total response
time [7].

1.1 Our Results In this paper we introduce a non-
clairvoyant algorithm, which we call LAPS〈β,s〉, and
show that it is scalable for scheduling jobs with sub-
linear nondecreasing speedup curves with the objective
of total response time.

LAPS〈β,s〉(Latest Arrival Processor Sharing)
Definition: This algorithm is parameterized by a real
β ∈ (0, 1]. Let nt be the number of jobs alive at time
t. The processors are equally partitioned among the
⌈βnt⌉ jobs with the latest arrival times (breaking ties
arbitrarily but consistently). Here s is the speed of the
processor, which will be useful in our analysis.

Note that LAPS〈β,s〉 is a generalization of Equi
since LAPS〈1,s〉 identical to Equis. But as β decreases,
LAPS〈β,s〉, in a manner reminiscent of SETF, favors
more recently released jobs. The main result of this
paper, which we prove in section 3, is then:

Theorem 1.1. LAPS〈β,s〉, with speed s = (1+β + ǫ)

processors, is
(

4s
βǫ

)
-competitive algorithm for scheduling

processes with sublinear nondecreasing speedup curves
for the objective of average response time. The same
result holds if LAPS〈β,s〉 is given s times as many speed
one processors as the adversary.

Essentially this shows that, perhaps somewhat sur-
prisingly, that a nonclairvoyant scheduling algorithm
can perform roughly as well in the setting of scheduling
jobs with arbitrary speedup curves on a multiprocessor,
as it can when scheduling jobs on a single processor. Our
proof of Theorem 1.1 essentially uses a simple amortized
local competitiveness argument with a simple potential
function. When β = 1, that is when LAPS〈β,s〉 = Equis,
we get as a corollary of Theorem 1.1 that Equi is (2+ǫ)-
speed (2s

ǫ)-competitive, matching the bound given in
[3], but with a much easier proof.

There is one unique feature of LAPS〈β,s〉 that is
worth mentioning. As we show in section 4, LAPS〈β,s〉 is
only O(1)-competitive when s is sufficiently larger (de-
pending on β) than 1. All the other scalability analyzes
of scheduling algorithms give O(1)-competitiveness for
any speed greater than one. For example, one one
processor SETF is simultaneously (1+ǫ)-speed (1+ 1

ǫ)-
competitive for all ǫ > 0 simultaneously.

Theorem 1.1 also improves the best known compet-
itiveness result for broadcast/multicast pull scheduling.
It is easiest to explain broadcast scheduling in context
of a web server serving static content. In this setting,
it is assumed that the web server is serving content on
a broadcast channel. So if the web server has multi-
ple unsatisfied requests for the same file, it need only
broadcast that file once, simultaneously satisfying all
the users who issued these requests. [6] showed how to
convert any s-speed c-competitive nonclairvoyant algo-
rithm for scheduling jobs with arbitrary speedup curves
into a 2s-speed c-competitive algorithm for broadcast
scheduling. Using this result, and the analysis of Equi
from [3], [6] showed that a version of Equi (4+ǫ)-speed
O(1)-competitive for broadcast scheduling with the ob-
jective of average response time. Using Theorem 1.1 we
can then deduce that a broadcast version of LAPS〈β,s〉 is
(2+ǫ)-speed O(1)-competitive for broadcast scheduling
with the objective of average response time.

1.2 Related Results For the objective of total re-
sponse time on a single processor, the competitive ra-
tio of every deterministic nonclairvoyant algorithm is
Ω(n1/3), and the competitive ratio of every random-
ized nonclairvoyant algorithm against an oblivious ad-
versary is Ω(log n) [10]. There is a randomized al-
gorithm, Randomized Multi-Level Feedback Queues,
that is O(log n)-competitive against an oblivious adver-
sary [1, 8]. The online clairvoyant algorithm Shortest
Remaining Processing time is optimal for total response
time. The competitive analysis of SETFs for single pro-
cessor scheduling was improved for cases when s ≫ 1 in
[2].

Variations of Equipartition are built into many
technologies. For example, the congestion control pro-
tocol in the TCP Internet protocol essentially uses
Equipartition to balance bandwidth to TCP connec-
tions through a bottleneck router. Extensions of the
analysis of Equi in [3] to analyzing TCP can be found
in [4, 5]. Other extensions to the analysis of Equi in [3]
for related scheduling problems can found in [14–16]. In
our results here, we essentially ignore the extra advan-
tage that the online algorithm gains from having faster
processors instead of more processors. [3] gives a bet-
ter competitive ratio for Equi in the model with faster

processors.
There are many related scheduling problems with

other objectives, and/or other assumptions about the
machine and job instance. Surveys can be found in
[12, 13].

2 Preliminaries

In this section, we review the formal definitions in-
troduced in [3]. An instance consists of a collection
J = {J1, . . . , Jn} where job Ji has a release/arrival
time ri and a sequence of phases

〈
J1

i , J2
i , . . . , Jqi

i

〉
. Each

phase is an ordered pair 〈wq
i , Γ

q
i 〉, where wq

i is a posi-
tive real number that denotes the amount of work in the
phase and Γq

i is a function, called the speedup function,
that maps a nonnegative real number to a nonnegative
real number. Γq

i (ρ) represents the rate at which work is
executed for phase q of job i when given ρ processors.

A phase of a job is parallelizable if its speedup
function is Γ(ρ) = ρ. Increasing the number of
processors allocated to a parallelizable job by a factor
of s increases the rate of processing by a factor of s. A
phase is sequential if its speedup function is Γ(ρ) = 1,
for all ρ ≥ 0. The rate that work is processed in
a sequential phase is independent of the number of
processors, even if it is zero. Formally, a speedup
function Γ is nondecreasing if and only if Γ(ρ1) ≤ Γ(ρ2)
whenever ρ1 ≤ ρ2. Formally, a speedup function Γ is
sublinear if and only if Γ(ρ1)/ρ1 ≥ Γ(ρ2)/ρ2 whenever
ρ1 ≤ ρ2.

A schedule Ss for a given job set J with n jobs on sp
processors is a function from {1, . . . , n}×[0,∞) to [0, sp],
where Ss(i, t) is the number of processors allocated to
job Ji at time t. We allow a job to be allocated a non-
integral number of processors (this is allowable because
we are considering preemptive scheduling). In order
for Ss to be feasible it must be that case that for all
t,
∑n

i=1 Ss(i, t) ≤ sp, that is at most sp processors
are allocated at any given time. Also in order to be
feasible, we require that for all i, there exist ri = c0

i <
c1
i < . . . < cqi

i = Ci such that for all 1 ≤ q ≤ qi,∫ cq

i

cq−1

i

Γq
i (Ss(i, t)) dt = wq

i , which ensures that before a

phase of a job begins, the job must have been released
and all of the previous phases of the job must have been
completed. The completion time of a job Ji, denoted Ci,
is the completion time of the last phase of the job. A
job is said to be alive at time t, if it has been released,
but has not completed, i.e., ri ≤ t ≤ ci. The response
time of job Ji, Ci − ri, is the length of the time interval
during which the job is alive. Let nt be the number of
jobs alive at time t. Then another formulation of total
response time is

∫∞

0
ntdt.

3 Analysis of LAPS〈β,s〉

We will assume that the online algorithm has more pro-
cessors than the adversary. Since in the context of pre-
emptive scheduling, a speed s processor is always at
least as useful as s unit speed processors, the analysis
for speed augmentation will follow as a direct conse-
quence of our analysis for machine augmentation. For
simplicity of analysis we will scale the number of proces-
sors so that the adversary has one unit speed processor,
and LAPS〈β,s〉 has s = 1+ǫ+β unit speed processors. So
when we say that ρ processors are devoted to a job, this
really means that ρp processors are devoted to the job,
where p is the number of processors for the adversar-
ial/optimal schedule that we are comparing LAPS〈β,s〉

to. Following the lead of [3] and [16], the first step in
our proof is to prove that there is a worst case instance
that contains only sequential and parallelizable phases.

Lemma 3.1. Let Ss be a nonclairvoyant scheduler with
s unit speed processors. Let J be an instance of jobs
with sublinear-nondecreasing speedup functions. Then
there is a job set J ′ that with only sequential and par-
allelizable phases such that F (Ss(J

′)) = F (Ss(J)) and
F (Opt(J ′)) ≤ F (Opt(J)), where Opt means optimal on
one unit speed processor.

Proof. We explain how to modify J to obtain J ′. We
perform the following modification for each time t and
each job Ji that Ss runs during the infinitesimal time
[t, t + dt]. Let w be the infinitesimal amount of work
processed by Ss during this time, and Γ the speedup
function for the phase containing w. Let ps denote the
number of processors allocated by Ss to w at time t.
So the amount of work in w is Γ(ps)dt. Let po denote
the number of processors allocated by Opt to w. It
is important to note that Opt may not process w at
time t. If p0 ≤ ps, we then modify J by replacing this
w amount of work with a sequential phase with work
w′ = dt. If po > ps, we then modify J by replacing
this w amount of work with parallelizable phase with
work w′ = psdt. Note that by construction, Ss will
not be able to distinguish between the instances J and
J ′ during the time period [t, t + dt]. Hence, since Ss

is nonclairvoyant Ss(J
′) = Ss(J). We are now left to

argue that F (Opt(J ′)) ≤ F (Opt(J)). We will give a
schedule X for J ′ that has total response time at most
F (Opt(J)).

First consider the case that po ≤ ps. Because the
speedup function Γ of the phase containing the work w
is non-decreasing, it took Opt(J) more than time dt to
finish the work w. The schedule X will start working
on the work w′ with po processors when Opt(J) started
working on the work w, and then after X completes

w′, X can let these p0 processors idle until Opt(J)
completes w.

Now consider that case that po ≥ ps. Again
the schedule X will start working on w′ when Opt(J)
started working on w. We now want to argue that X
can complete w′ with po processors in less time than it
took Opt(J) to complete w with po processors. It took
time psdt

po
time for X to complete w′ since the psdt work

in w′ is parallelizable. It took Opt(J) time Γ(ps)dt
Γ(po) to

complete the Γ(ps)dt work in w. The fact X completes

w′ before Opt(J) completes w follows since ps

po
≤ Γ(ps)

Γ(po)

since po ≥ ps and Γ is sublinear. �

By Lemma 3.1, it is sufficient to consider instances
that contain only sequential and parallelizable phases.
So for the rest of the proof we fix such an instance. Our
goal is to bound the number Nt of jobs alive under Opt
at time t in terms of what is happening under LAPS〈β,s〉

at this same time. This requires the introduction of a
fair amount of notation. Let nt denote number of jobs
alive under LAPS〈β,s〉 at time t. Let mt denote the
number of these that are within a parallelizable phase at
this time and let ℓt denote the same except for sequential
phases. Let Nt, Mt, and Lt denote the same numbers
except under Opt. Let N̂t denote the number jobs at
time t that LAPS〈β,s〉 has not completed, but for which

LAPS〈β,s〉 is ahead of Opt. Let ℓ̂t denote the number
jobs that LAPS〈β,s〉 has not completed at time t, and
either LAPS〈β,s〉 is ahead of Opt on this job at this time,
or LAPS〈β,s〉 is executing a sequential phase on this job
at this time.

We note some relationships between these job
counts Clearly N̂t ≤ Nt since Opt has not completed
these N̂t jobs.

∫∞

0
Ltdt =

∫∞

0
ℓtdt since each integral is

simply the sum of the work of all sequential phases of
all jobs. Finally note that ℓ̂t ≤ N̂t + ℓt since each of the
ℓ̂t jobs is either in a sequential phase, or is included in
the count N̂t. Thus we can conclude that the total cost
to Opt is bounded as follows:

F (Opt(J)) =

∫ ∞

0

Ntdt

= 1
2

∫ ∞

0

(Nt + (Mt + Lt)) dt

≥ 1
2

∫ ∞

0

(
N̂t + 0 + ℓt

)
dt

≥

∫ ∞

0

1
2 ℓ̂tdt

To establish Theorem 1.1 using an amortized local
competitiveness argument [3, 12], we need to define a
potential function Φt such that the following conditions
hold:

Boundary: Φt is initially 0, and finally nonnegative.

Arrival: Φt does not increase when a new job arrives.

Completion: Φt does not increase when either the
online algorithm or the adversary complete a job.

Running: For all times t when no job arrives or is
completed,

(3.1) nt +
dΦt

dt
≤ 1

2cℓ̂t

By integrating the running condition over time, and
using the boundary, arrival, and completion conditions,
one can conclude that

F (LAPS〈β,s〉) =

∫ ∞

0

ntdt

≤

∫ ∞

0

ntdt + [Φ∞ − Φ0]

=

∫ ∞

0

(
nt +

dΦt

dt

)
dt

≤

∫ ∞

0

(
1
2
cℓ̂t

)
dt

≤ c · F (Opt)

We define the potential function Φt as follows. Let
Ji denote the ith of the nt jobs currently alive under
LAPS〈β,s〉 at time t, sorted by their arrival times ri. So
J1 is the earliest arriving job. Let xi denote the amount
of parallelizable work of Ji has been completed by Opt
before time t, but that was not completed by LAPS〈β,s〉

before time t. Let γ = 2
ǫ . The potential function is

then:

(3.2) Φt = γ

nt∑

i=1

i ·max(xi, 0)

The boundary conditions for Φt are trivially satis-
fied. If a new job Jj arrives, then the value of the poten-
tial function does not increase because LAPS〈β,s〉 will
not be behind on that job (i.e. xj = 0). If LAPS〈β,s〉

completes job Jj, then j max(xj, 0) = 0 since xj = 0,
removing job Jj from the summation will not increase
the coefficient i of any other job. Opt completing a job
Jj has no effect on the potential function at all.

Consider an infinitesimal period of time [t, t+dt]
during which no jobs arrive or are completed by either
Equi or Opt. Consider how much Φt can increase due
Opt’s processing during this period. Without loss of
generality, Opt processes only parallelizable work. Opt
processes this parallelizable work at at most unit rate.
This increases the sum of the xi’s for these jobs by a

total of at most dt. Opt can increase Φt the most by
working only on the most recently arrived job because
its coefficient is maximal. Since the most recently
arrived job has coefficient nt in Φt, the rate of increase
in Φt due to Opt’s processing is at most γnt.

We now need to bound how much Φt must decrease
due to LAPS〈β,s〉’s processing during the same infinites-
imal period of time [t, t+dt]. The algorithm works on
the ft = ⌈βnt⌉ jobs with the latest arrival times. Ide-
ally, for these jobs, the term max(xi, 0) in the poten-
tial function decreases at a rate of s

ft
. However, there

are two possible reasons that this desired decrease will
not occur. The first possible reason is that LAPS〈β,s〉,
though not done the job, is ahead of Opt at this time.
For such jobs, xi ≤ 0 and hence max(xi, 0) is already 0.
The second possible reason is the job is in a sequential
phase under LAPS〈β,s〉 at this time. Because xi mea-
sures only the work in parallelizable phases, LAPS〈β,s〉

does not decrease max(xi, 0). Recall that we defined ℓ̂t

to be the number jobs that have at least one of these
properties. In the worst case, these ℓ̂t jobs are those
that arrive the most recently. Let us for the moment
assume that ℓ̂t ≤ ft. In this case, LAPS〈β,s〉 effectively
decreases the term max(xi, 0) only for the jobs with co-

efficients in the range [nt − ft +1, nt − ℓ̂t]. The value
of max(xi, 0) decreases for these jobs at a rate of s

ft
.

Hence, the decrease in Φt due to LAPS〈β,s〉’s processing
is at least

dΦt

dt
= γ

nt−bℓt∑

i=nt−ft+1

i ·
dxi

dt

= γ

nt−bℓt∑

i=nt−ft+1

i ·

(
−

s

ft

)

=
−sγ

2ft

[
(nt − ℓ̂t)(nt − ℓ̂t + 1)

−(nt − ft)(nt − ft + 1)]

=
sγ

2ft

[
2ntℓ̂t − ℓ̂2t + ℓ̂t − 2ntft + f2

t − ft

]

≤
sγ

2ft

[
2ntℓ̂t − 2ntft + f2

t − ft

]

≤
sγnt ℓ̂t

ft
− sγnt +

sγft

2
−

sγ

2

=
sγnt ℓ̂t

⌈βnt⌉
− sγnt +

sγ⌈βnt⌉

2
−

sγ

2

≤
sγnt ℓ̂t

βnt
− sγnt +

sγ(βnt + 1)

2
−

sγ

2

=
sγℓ̂t

β
− sγnt +

sγβnt

2

Now evaluating running condition (line 3.1), we find
that

nt +
dΦt

dt
≤ nt +

[
(γnt) +

(
sγℓ̂t

β
− sγnt +

sγβnt

2

)]

=

(
1 + γ − sγ +

sγβ

2

)
nt +

sγ

β
ℓ̂t

≤
sγ

β
· ℓ̂t =

2s

βǫ
· ℓ̂t = 1

2c · ℓ̂t

The last inequality follows since by substitution in γ =
2
ǫ and s = 1+β+ǫ

1 + γ − sγ +
sγβ

2
= 1 +

2

ǫ
− 2

1+β+ǫ

ǫ
+

(1+β+ǫ)β

ǫ

which one can verify is not positive by multiplying
through by ǫ, and collecting like terms.

Now consider that case in which ℓ̂t ≥ ft. In this case
all of the ft = ⌈βnt⌉ jobs being processed LAPS〈β,s〉

might be in sequential phases or have max(xi, 0) = 0
and hence LAPS〈β,s〉’s processing might not decrease
Φt. Evaluating running condition, we find that

nt +
dΦt

dt
≤ nt + [(γnt) + (0)]

=

(
1 +

2

ǫ

)
nt

≤
2(1+β+ǫ)

ǫ

1

β
· ⌈βnt⌉

=
2s

βǫ
· ft

≤ 1
2c · ℓ̂t

4 Two Worst Case Instances for LAPS〈β,s〉

Theorem 1.1 proves that this algorithm with s =

(1+β+ǫ) processors is
(

4s
βǫ

)
-competitive. This result

breaks if the number of the jobs allocated processors
is either decreased from ⌈βnt⌉ to ⌈o(nt)⌉ or increased
to ⌈(β + ǫ)nt⌉. This section provides two worst case
instances for LAPS〈β,s〉, the steady state stream and
the MPT [10] examples. These instances show that
Theorem 1.1 is tight in each of these two extremes. In
fact, the formulation of the algorithm LAPS〈β,s〉 was
first motivated by trying to find a trade off between
these two instances.

Theorem 4.1. There is a set of jobs on which
LAPS〈β,s〉 has a competitive ratio of s

(s−1)β = s
(β+ǫ)β .

Proof. The set of jobs referred to as steady state stream
was introduced in [3]. Not only does it provide a lower

bound, it also provides intuition as to why LAPS〈β,s〉

manages to work at all.
The job set J consists of two streams, one of

parallelizable work and the other of sequential work.
The parallelizable stream is a sequence of unit work
jobs such that if Opt allocates its p processors to it,
it can finish each of these jobs just as the next arrives
so that there is always one job alive at any given
moment. Similarly, the sequential stream has ℓ very
small sequential jobs arrive continuously so that the
new one arrives just as the previously arrived ones
complete so that there are always ℓ alive. Recall, that
sequential work completes at a constant rate even with
zero processors allocated to it. These sequential jobs
arrive often enough that they are effectively always the
most recently arrived jobs.

It is perhaps hard to believe that a nonclairvoyant
scheduler, even with sp processors, can perform well
here. The scheduler does not know which of the jobs is
parallelizable. Hence it wastes most of the processors
of the sequential jobs, and falls further and further
behind on the parallelizable jobs. LAPS〈β,s〉, however,
is able to automatically “self adjust” the number of
processors wasted on the sequential jobs so that it
performs competitively. It may take a while for the
system under LAPS〈β,s〉 to reach a “steady state”, but
when it does, let n̂ denote the number of jobs alive.

We will show that a key resource for getting and
keeping nt high is the parallelizable work, Xt, completed
by Opt but not by LAPS〈β,s〉 by time t. The paralleliz-
able work is released and completed by Opt at a rate of
Γ(p) = 1. LAPS〈β,s〉 allocates sp

βbn
of its sp processors

to the βn̂ jobs with the latest arrival times, βn̂ − ℓ of
them being parallelizable. Hence it completes paralleliz-
able work at a rate of sβbn−ℓ

βbn
. We say that the system

reaches a steady state when the amount of work in Xt

remains constant, giving sβbn−ℓ
βbn = 1 or n̂ = s

(s−1)βℓ.

In the steady state, Opt’s cost per unit time is ℓ + 1,
and LAPS〈β,s〉’s cost per unit time is n̂. This gives a

competitive ratio of s
(s−1)β = 1+β+ǫ

(β+ǫ)β .

For this lower bound, it is sufficient to observe that
if fewer than n̂ jobs are alive under LAPS〈β,s〉, then its
the amount Xt that it is behind in the parallelizable
work will continue to increase. Because each paralleliz-
able job has unit work, the number n̂ of uncompleted
jobs continues to increase. Once in the steady state, it
can stay there for a long enough time so that these costs
dominate the cost of reaching the steady state. �

This is within a factor of four with our upper bound
when β << ǫ. In particular, it shows that the ratio
is ω(1) when β = o(1). This is why the algorithm
SETFs ≈ LAPS〈0,s〉, which allocates processors to only

one job, does not perform well when there are sequential
jobs.

Theorem 4.2. There is a set of only parallelizable jobs
on which LAPS〈β,s〉 has a competitive ratio of Ω (nǫ)

with s = 2
2−β

− βǫ or Ω
(
n1−ǫ

)
with s = 1 + βǫ.

Proof. Here we define the MPT instance, which was
introduced in [3, 7, 10] as a lower bound instance for
Equi and for Equi2+ǫ. We modify this instance to lower
bound the performance of LAPS〈β,s〉. In this instance
the number of alive jobs nt briefly peeks way above the
steady state number n̂. This is possible even though the
total parallelizable work Xt in the system is decreasing
rapidly, because the work remaining per job decreases
even faster. The MPT instance contains a stream of n−ℓ
parallelizable jobs. As done there, there could also be
many newly arriving sequential jobs in order to distract
LAPS〈β,s〉 away from the parallelizable work, however,
the result is just as good, when we assume that there
are ℓ extra parallelizable jobs that arrive at time zero.
The ith stream job Ji has release time ri =

∑i−1
j=1 wj and

work wi, where the values wi will be carefully defined
later. The first (1−β)ℓ of the ℓ extra jobs will never be
executed by LAPS〈β,s〉 and hence can have zero work.
The remaining βℓ extra jobs will be identical to the first
stream job J1, with r1 = 0 and work w1. On this job set,
Opt completes the zero work in the first (1 − β)ℓ extra
jobs in zero time, ignores the remaining βℓ extra jobs,
and uses all p processors to complete the parallelizable
stream in place, giving a flow time of

∑n−ℓ
i=1 (1 + βℓ)wi.

In contrast LAPS〈β,s〉 manages to complete none of the

jobs, giving a flow time of
∑n−ℓ

i=1 (i + ℓ)wi.
[3, 7, 10] sets wi = (ℓ

i+ℓ)
q for some q. Then ni = i+ℓ

is simply the number of jobs alive after job Ji arrives
and the ℓq simply scales all the wi so that the first job
has w1 = 1. Hence, it is equivalent, yet simpler, to set
wi = (1

ni
)q . We will now show that LAPS〈β,s〉 is not

competitive when q = 2 − ǫ.

F (LAPS〈β,s〉(J))

F (Opt(J))
=

∑n−ℓ
i=1 (i + ℓ)wi∑n−ℓ

i=1 (1 + βℓ)wi

≈

∑n
ni=ℓ ni

(
1
ni

)q

∑n
ni=ℓ βℓ

(
1
ni

)q

=

1
−q+2

[
ni

−q+2
]n
ni=ℓ

βℓ
−q+1 [ni

−q+1]
n
ni=ℓ

The magic of setting q = 2 − ǫ is that ni
−q+2 = ni

ǫ

increases with ni, while ni
−q+1 = ni

−1+ǫ decreases.
Hence, the nominator is dominated by the ni = n term
while the denominator is dominated by the ni = ℓ term.

This gives

F (LAPS〈β,s〉(J))

F (Opt(J))
≈

1
−q+2

n−q+2

βℓ
q−1ℓ−q+1

=
1
ǫ
nǫ

βℓ
1−ǫℓ

−1+ǫ

= Ω (nǫ)

To make sure that none of the jobs complete under
LAPS〈β,s〉, we will see that it suffices that the parameter

q is set so that s = βq
1−(1−β)q . Consider the job Ji. We

show that the total work computed on Ji is at most
wi. The first step is to show that Ji is executed by
LAPS〈β,s〉 during the time period [rk, rk+1] of length
wk, for every k such that k ≥ i and nk < ni

1−β . Unless it

is one of the first (1−β)ℓ of the ℓ extra jobs, Ji will get
executed when it first arrives. The number nk of jobs
alive at any given moment in the future continues to
increase as more stream jobs arrive. There are ni = i+ℓ
jobs that did not arrive after Ji. Hence, nk − ni is the
number of jobs to whom LAPS〈β,s〉 gives preference over
Ji. Finally, βnk is the number of jobs that LAPS〈β,s〉

runs. It follows that Ji will continue to be executed until
nk −ni ≥ βnk or equivalently nk ≥ ni

1−β
. During such a

time period [rk, rk+1] of length wk, there are nk = k + ℓ
jobs alive. Hence, Ji is allocated sp

βnk
processors. We

can then compute the total work completed on Ji to be

ni
1−β

−ℓ∑

k=i

s

βnk
wk =

ni
1−β∑

nk=ni

s

βnk

(
1

nk

)q

=
s

β(−q)

[(
1

nk

)q] ni
1−β

nk=ni

=
s

βq

[(
1

ni

)q

−

(
1 − β

ni

)q]

=
s

βq
[1 − (1 − β)q] · wi

This is why it suffices that the parameter q is set so that
s = βq

1−(1−β)q to insure that the total work computed on

Ji is at most wi.
What remains is to understand this odd relation

s(q) = βq
1−(1−β)q . We saw that the pivotal value of

q at which LAPS〈β,s〉 is no longer competitive occurs
when q = 2. This gives that the pivotal speed is
s(2) = 2β

1−(1−β)2 = 2β
2β−β2 = 2

2−β . In order to decrease

q from 2 to 2 − ǫ, s needs to decrease from s(2) to

s(2 − ǫ) ≈ s(2) − ds(2)
dq

ǫ. Maple was kind enough to

give that ds(2)
dq

≤ β for β ∈ [0, 1]. Hence, with extra

resources s = 2
2−β

− βǫ, LAPS〈β,s〉 is not competitive.

By changing ǫ to 1 − ǫ, one gets that the competitive
ratio of Ω

(
n1−ǫ

)
by setting q = 1 + ǫ. s(1) = 1 and

ds(1)
dq ≈ β for β ∈ [0, 1]. Hence, with extra resources

s = 1 + βǫ, the competitive ratio is Ω
(
n1−ǫ

)
. �

For example, with β = 1, LAPS〈β,s〉 = Equis and
the result corresponds to that in [3] that competitive
ratio is Ω (nǫ) with s = 2 − ǫ and Ω

(
n1−ǫ

)
with

s = 1 + ǫ. When β is an infinitesimal, the pivotal speed
is s = 1 + 1

2β, which is fairly close to the upper bound
that requires speed of more than s = 1 + β in order to
be competitive.

Acknowledgments: We thank Nicolas Schabanel and
Julien Robert for helpful discussions.

References

[1] Luca Becchetti and Stefano Leonardi. Nonclairvoyant
scheduling to minimize the total flow time on single
and parallel machines. J. ACM, 51(4):517–539, 2004.

[2] Piotr Berman and Chris Coulston. Speed is more pow-
erful than clairvoyance. Nordic Journal of Computing,
6(2):181–193, 1999.

[3] Jeff Edmonds. Scheduling in the dark. Theoretial

Computer Science, 235:109–141, 2000.
[4] Jeff Edmonds. On the competitiveness of aimd-tcp

within a general network. In LATIN, pages 567–576,
2004.

[5] Jeff Edmonds, Suprakash Datta, and Patrick Dymond.
Tcp is competitive against a limited adversary. In
SPAA ’03: Proceedings of the fifteenth annual ACM

symposium on Parallel algorithms and architectures,
pages 174–183, 2003.

[6] Jeff Edmonds and Kirk Pruhs. Multicast pull schedul-
ing: When fairness is fine. Algorithmica, 36(3):315–
330, 2003.

[7] Bala Kalyanasundaram and Kirk Pruhs. Speed is
as powerful as clairvoyance. J. ACM, 47(4):617–643,
2000.

[8] Bala Kalyanasundaram and Kirk Pruhs. Minimizing
flow time nonclairvoyantly. J. ACM, 50(4):551–567,
2003.

[9] Rick Merritt. Cpu designers debate multi-core future.
EE Times, June 2008.

[10] Rajeev Motwani, Steven Phillips, and Eric Torng.
Non-clairvoyant scheduling. Theoretical Computer Sci-

ence, 130:17–47, 1994.
[11] Cynthia Phillips, Cliff Stein, Eric Torng, and Joel

Wein. Optimal time-critical scheduling via resource
augmentation. Algorithmica, pages 163–200, 2002.

[12] Kirk Pruhs. Competitive online scheduling for server
systems. SIGMETRICS Performance Evaluation Re-

view, 34(4):52–58, 2007.
[13] Kirk Pruhs, Jiri Sgall, and Eric Torng. Online schedul-

ing. In Handbook on Scheduling. CRC Press, 2004.

[14] Julien Robert and Nicolas Schabanel. Non-clairvoyant
batch sets scheduling: Fairness is fair enough. In
European Symposium on Algorithms, pages 741–753,
2007.

[15] Julien Robert and Nicolas Schabanel. Pull-based data
broadcast with dependencies: be fair to users, not
to items. In ACM-SIAM Symposium on Discrete

Algorithms, 2007.
[16] Julien Robert and Nicolas Schabanel. Non-clairvoyant

scheduling with precedence constraints. In Symposium

on Discrete Algorithms, pages 491–500, 2008.

