Speed Scaling to Manage Temperature

Nikhil Bansal' and Kirk Pruhs?

! IBM T. J. Watson Research Center nikhil@us.ibm.com
2 Computer Science Department, University of Pittsburgh, kirk@cs.pitt.edu *

Abstract. We consider speed scaling algorithms to minimize device
temperature subject to the constraint that every task finishes by its
deadline. We assume that the device cools according to Fourier’s law. We
show that the optimal offline algorithm proposed in [18] for minimizing
total energy (that we call YDS) is an O(1)-approximation with respect
to temperature. Tangentially, we observe that the energy optimality of
YDS is an elegant consequence of the well known KKT optimality con-
ditions. Two online algorithms, AVR and Optimal Available, were pro-
posed in [18] in the context of energy management. It was shown that
these algorithms were O(1)-competitive with respect to energy in [18]
and [2]. Here we show these algorithms are not O(1)-competitive with
respect to temperature. This demonstratively illustrates the observation
from practice that power management techniques that are effective for
managing energy may not be effective for managing temperature. We
show that the most intuitive temperature management algorithm, run-
ning at such a speed so that the temperature is constant, is surprisingly
not O(1)-competitive with respect to temperature. In contrast, we show
that the online algorithm BKP, proposed in [2], is O(1)-competitive with
respect to temperature. This is the first O(1)-competitiveness analysis
with respect to temperature for an online algorithm.

1 Introduction

In May Intel abruptly announced that it had scrapped the development of two
new computer chips (code named Tejas and Jayhawk) for desktops/servers in
order to rush to the marketplace a more efficient chip technology more than a
year ahead of schedule. Analysts said the move showed how eager the world’s
largest chip maker was to cut back on the heat its chips generate. Intel’s method
of cranking up chip speed was beginning to require expensive and noisy cool-
ing systems for computers [17]. (Current estimates are that cooling solutions
are rising at $1 to $3 per watt of heat dissipated [15].) This demonstrates that
exponentially growing device power consumption, the power densities in micro-
processors have doubled every three years [15], has reached the critical point

* Supported in part by NSF grants CCR-0098752, ANI-0123705, CNS-0325353, and
CCF-0448196.

where power management, and in particular temperature management, is one of
the main criteria driving device design.

There is an extensive literature on power management in computing devices,
see for example [4,12,16]. However, the vast majority of this literature focuses
on power management to conserve energy, and not on power management to
reduce temperature. Temperature and energy are different physical entities with
quite different properties. Bluntly, if the processor in your mobile device exceeds
its energy bound, your battery is exhausted; If your processor exceeds it thermal
threshold, the processor dies. Power management schemes for conserving energy
focus on reducing cumulative power, while power management schemes for re-
ducing temperature must focus more on instantaneous power. Therefore power
management schemes designed to conserve energy may not perform as well when
the goal is to reduce temperature. In fact, many low-power techniques are re-
ported to have little or no effect on temperature [15]. Temperature aware design
is therefore a distinct, albeit related, area of study to energy aware design [15].

Both in academic research and practice, dynamic voltage/frequency/speed
scaling is the dominant technique for power management. Speed scaling involves
dynamically changing the speed of the processor. Current microprocessors from
AMD, Intel and Transmeta allow the speed of the microprocessor to be set dy-
namically. Some modern processors already are able to sense their own temper-
ature, and thus can be slowed down or shut down so the processor temperature
will stay below its thermal threshold [15]. In this paper we study speed scaling
strategies to manage temperature.

1.1 Problem Formulation

We need to model the cooling behavior of a device. Cooling is a complex phe-
nomenon that can not be modeled completely accurately by any simple model [14].
Still we require some first order simple approximation. We assume that the rate
of cooling follows Fourier’s Law, which states that the rate of cooling is pro-
portional to the difference in temperature between the object and the ambient
environment temperature. We assume that the environment has a fixed temper-
ature, and that temperature is scaled so that the ambient temperature is zero.
A first order approximation for rate of change T’ of the temperature T is then
T' = aP — bT, where P is the supplied power, and a, b are constants [14].

We make the standard assumption that if the processor is run at speed s,
then the power consumption is P(s) = s* for some constant « > 1 [4,2, 11, 1].
For CMOS based devices, which will likely remain the dominant technology for
the near term future, the well known cube-root rule is that the speed s is roughly
proportional to the cube-root of the power P, or equivalently, P(s) = s3, i.e.,
the power is proportional to the cube of the speed [4].

The input is a collection of tasks, where each task i has a release time r;
when it arrives into the system, an amount of work w; that must be performed
to complete the task, and a deadline d; for completing this work. In the online
version of the problem, the scheduler learns about a task only at its release
time; at this time, the scheduler also learns the exact work requirement and the

deadline of the task. In some settings, for example, the playing of a video or other
multimedia presentation, there may be natural deadlines for the various tasks
imposed by the application. In other settings, the system may impose deadlines
to better manage tasks [5]. A schedule specifies which task to run at each time,
and at what speed that task should be run. The work performed on a job is the
integral over time of the speed that this job is run at that time. The schedule
must be feasible, that is, w; units of work must be performed on task ¢ during
the time interval [r;, d;]. This is always possible since the processor can run at
any speed. Preemption is allowed, that is, the scheduler may suspend a task and
then later restart the task from the point of suspension.

Energy is power integrated over time. In the energy problem, the goal is to
find a feasible schedule that minimizes the total energy used. In the temperature
problem, the goal is to find a feasible schedule that minimizes the the maximum
temperature that the device reaches over the whole history of the schedule.
That is, we want to determine the least thermal threshold that will allow us to
complete these tasks. We assume that the initial temperature of the device is
the ambient temperature, although this assumption is not crucial.

A schedule is e-competitive for a particular objective function if the value of
that objective function on the schedule is at most ¢ times the value of the objec-
tive function on the optimal schedule. A scheduling algorithm is e-competitive
if its output is c-competitive for all instances.

1.2 Results

Theoretical investigations into speed scaling techniques to manage energy were
initiated in [18]. They showed that there is a simple greedy offline algorithm,
which we call YDS, that generates the feasible schedule (for all @) that uses
minimum energy. We describe the algorithm YDS in section 2. [18] also proposed
two online algorithms Average Rate (AVR), and Optimal Available (OA). The
algorithm Average Rate (AVR) runs each task i at a rate of w;/(d; — r;). The
algorithm Optimal Available (OA) at any point of time schedules the unfinished
work optimally (say using YDS) under the assumption that no more tasks will
arrive. AVR and OA were proved O(1)-competitive with respect to energy in
[18] and [2], respectively. In [2] another online algorithm, which we call BKP,
was proposed, and shown to be O(1)-competitive with respect to energy. The
motivation for introducing BKP was that it has a lower competitive ratio, with
respect to energy, than do AVR or OA when « is large. We postpone a description
of the BKP algorithm until section 4.

Theoretical investigations into speed scaling techniques to manage tempera-
ture were initiated in [2]. In [2] it was shown that in principle the offline problem
can be solved in polynomial time (modulo numerical stability issues) using the
Ellipsoid algorithm. The Ellipsoid algorithm is useful for establishing theoreti-
cal results, but it is practically inefficient for moderate sized problems. Due to
the complicated nature of Fourier’s law, it seems unlikely that one can easily
compute the optimal temperature schedule.

In section 2 we show that while the YDS schedule may not be optimal for tem-
perature, it is an O(1)-approximate schedule with respect to temperature. Thus,
this constructively shows that there are schedules that are O(1)-approximate
with respect to both of the dual criteria: temperature and energy. In some sense,
this is the best result possible, as even for some 1 job instances it is not to dif-
ficult to see that there does not exist a schedule that is (1 + €)-approximate for
both energy and temperature (see Lemma 5 for details).

In section 3 we show that that online algorithms OA and AVR, proposed
in [18] in the context of energy management, are not O(1)-competitive with
respect to temperature. Recall that there algorithms are O(1)-competitive with
respect to energy. This demonstratively illustrates the observation from practice
that power management techniques that are effective for managing energy may
not be effective for temperature. We also show that an intuitive temperature
management algorithm, running at such a speed so that the temperature is
constant, is surprisingly not O(1)-competitive with respect to temperature.

In section 4 we give our main result. We show that the online speed scaling
algorithm, that we call BKP, proposed in [2] in the context of energy manage-
ment, is O(1)-competitive with respect to temperature. This is the first O(1)-
competitiveness analysis with respect to temperature for an online algorithm.
Another way to interpret this result is that if BKP exceeds the thermal thresh-
old Tp,4: of the device then every other feasible schedule causes the device to
reach a temperature of £2(Tp4z). Our temperature analysis of the online algo-
rithm BKP compares BKP to YDS, and thus our temperature analysis of YDS
is also necessary component to our temperature analysis of BKP.

At first inspection it seems difficult to reason about temperature because of
the exponential decay nature of Fourier’s law. All of our temperature analyses use
the observation that the maximum temperature can be approximated within a
constant by a times the maximum energy used over an interval of length @(1/b).
We believe that this observation nicely explains the different natures of energy
and temperature management, greatly simplifies the task of reasoning about
temperature, and will surely be useful in future investigations in algorithmic
issues in temperature management.

The paper [18] did not contain a proof that the YDS algorithm produces
the most energy efficient feasible schedule. And to the best of our knowledge,
no such proof has appeared in the literature. We show in section 5 that the
correctness of YDS is an elegant consequence of the well-known KKT optimality
conditions. This illustrates the utility of the KKT optimality conditions in power
management problems. As another example, KKT optimality conditions can be
used to simply some proofs in [13].

1.3 Further Related Results

The YDS schedule also minimizes the maximum speed, over all times in the
schedule, that the processor runs at that time [18]. The BKP online algorithm
is optimally (among deterministic online algorithms) e-competitive for this ob-
jective function [2].

[10] studies online speed scaling algorithms to minimize energy usage in a set-
ting where the device also has a sleep state, and gives an offline polynomial-time
2-approximation algorithm. [10] also gives an O(1)-competitive online algorithm,
which uses as a subroutine an algorithm for pure dynamic speed scaling. These
results have been extended to the case of multiple slow-down states in [1].

[13] give an efficient algorithm for the problem of minimizing the average
flow time of a collection of dynamically released equi-work processes subject to
the constraint that a fixed amount of energy is available.

2 YDS Temperature

Our goal is to show that the energy optimal YDS schedule produced by the YDS
algorithm is 20-competitive with respect to temperature. We first start with a
description of the YDS algorithm. We then show in Lemma 1 that the optimal
maximum temperature of a schedule is within a factor of 4 of the a times the
maximum energy expended of an interval of length ¢ = lnTz. We call such an
interval a c-interval. Thus it is sufficient to show that YDS is 5b-competitive with

respect to the maximum energy expended over any c-interval.

YDS Algorithm: Let w(ty,%3) denote the work that has release time > ¢; and
has deadline < t5. The intensity of the interval [t1, t3] is then w(ty,t2)/(t2 —11).
The YDS algorithm repeats the following steps: Let [t1,%2] be the maximum
intensity interval. The processor will run at speed w(t1,%2)/(t2 — 1) during
[t1,12]. Then the instance is modified as if the times [¢1, 2] didn’t exist. That is,
all deadlines d; > 1 are reduced to max(t1,d; — (t2 — t1)), and all release times
r; > t1 are reduced to max(t1,7; — (t2 —t1)), and the process is repeated. Given
the speed as a function of time as determined by this procedure, YDS always
runs the released, unfinished task with the earliest deadline.

Note that the YDS schedule has the property that each task is run at a fixed
rate when the task is run. This rate is fixed with respect to time, but may be
different for different tasks.

Lemma 1. For any schedule, if E denotes a times the mazrimum energy in a
c-interval, then E[2 < Tpa: < 2E.

Proof. Let P(t) be the power at time t. We rewrite Fourier’s Law as
d(e”T) = ae® P(t)dt ()

Let &k = ¢b = In2. Define T,,4; to be the maximum temperature reached for
the schedule, and F be defined to be a times the maximum energy used any c-
interval. We first show that T,,,, is at most twice F. Suppose that temperature
Tnas is achieved at time to. Then integrating equation 1 from tqg—k/b = to—c to

to, we get T(tg)ebte —T(tg—k/b)e?o~F = q fo b e? P(t)dt. As €® is increasing

to—k/
in ¢, the term ftzo_k/b e’ P(t)dt is at most eb?e ftu , P(t)dt. Thus, T(tg) <

to—k/

T(to — k/b)e™ +a [i*, , P(t)dt. As T(to — k/b) < T(to) = Tpnag, it follows
that Thaz (1 —e7%) < a :Do_k/bP(t)dt < F, and hence Tpq, < 1—§—k = 2F, as
k=1In2.

We now want to show T, is at least half of E. Let [to — k/b,0] be a
c-interval where the maximum amount of energy is used. Integrating equation
1 gives T(to)e?® — T(tg — k/b)e’ =% = a fttoo_k/b e’ P(t)dt. Using the fact that
T(to — k/b) > 0, and that €® is an increasing function of ¢, and the definition
of E, it follows that T'(to)e’ > a(ﬁiu_k/b e?" P(t)dt > aebo~F f:ou_k/bP(t)dt =
e R B Thus, Tnar > T(te) > e "E = E/2.

Note that YDS is not optimal for minimizing the maximum temperature,
or for minimizing the total energy in a c-interval. The fact that YDS is not
optimal for temperature can be seen on 1 job instances where the in the optimal
temperature schedule must run at a speed that follows some non-constant Euler
curve [2] (see Lemma 5 for more details). The fact that YDS is not optimal for
minimizing energy used in a c-interval can be seen from the following instance.
Consider for example, an instance with 2 tasks with work 1 each, both of them
arrive at time 0 and have deadlines ¢/2 and 3¢/2 respectively.

For the rest of this section we only consider the objective of minimizing the
maximum energy in any c-interval. This will culminate in Lemma 3, which states
that the YDS schedule is 5 approximate with respect to this objective.

We first require some preliminary definitions and observations. Let I denote a
problem instance. Let Y DS(I) be the YDS schedule on input I. Let Y (I) denote
the maximum energy used in any c-interval in Y DS(I). Let Opt(I) denote the
optimum value of the maximum energy used in any c-interval, over all feasible
schedules. Let X (I) denote a c-interval in Y DS(I) that uses energy Y (I). Let
ro = (€Y (I)/c)* . The value of ¢ will be fixed later. Call a task in I, slow , if it
runs at rate strictly less than rg in Y DS(I). This notion is well defined because
a task runs at constant rate in the YDS schedule. The rest of the tasks are called
fast. Define I' to consist of exactly the fast tasks in I. Let 7/(¢) denote the rate
at time ¢ in Y DS(I'), and r(¢) denote the rate at time ¢ in Y DS(7).

Define an island to be a maximal interval of time where 7/(t) > 0. The
following two claims easily follow from the nature of the YDS algorithm.

Claim. For all times ¢, v'(t) = r(t) if » > rg and /() = 0 otherwise.

Claim. Each task in the instance I’ is totally contained inside an island. That
is, for each task 7 € I, the interval [r;, d;] does not overlap with any time where

r(t) = 0.

Thus, we can view the instance I’ as a collection of disjoint intervals (islands),
and each task is contained in an island. For an instance I we define its support
to be (mauxie]~ d; —min; 7 7;), that is, all task in an instance are contained in an

interval of length equal to the support of the instance. By the energy optimality
of YDS, we trivially have that,

Claim. For an instance I that has support no more than ¢, Y(f) = Opt(f).

As most of the energy in X (I) is contained is fast tasks, we have that
Lemma 2. Let I and I' be as defined above. Then (1 —¢)Y (I) <Y (I') < Y(I).

We omit a formal proof of Lemma 2 due to space constraints.
We now sketch the proof that YDS is 5-competitive with respect to minimiz-
ing the maximum energy used over any c-interval.

Lemma 3. For any instance I, Opt(I) > min(eY (I)/2, (1—€)Y (I)/3). Choosing
e =2/5, it follows that Opt(I) > Y (I)/5.

Proof. As it is clear that Opt(I') < Opt(I), it suffices to show that Opt(I') >
min(eY (1)/2, (1 — €)Y (I)/3).

Consider an island G of I’ and let ¢ be the length of G. At the YDS schedule
for I’ has rate at least rg during G, the total energy consumed by YDS and hence
by any schedule for G is at least tr§. If ¢ > ¢, then, by an averaging argument,
for any schedule for G, there is some c-interval that has energy at least r§t¢/[t/c]
which is at least (1/2)er§ = €Y (I)/2. Thus, Opt(I') > €Y (I)/2 if t > c.

If all the islands have length no more than ¢, then consider the islands that
intersect X (I). If some such island G has energy at least (1—¢)Y (I)/3, the result
follows by Claim 2. In the case that all islands that intersect X (I) have energy
less than (1 — €)Y /3. By Lemma 2 we know that in Y DS(I') the total energy
during X (I) is at least (1 — €)Y (I). As at most two islands can lie partially in
X(I), at least (1 —¢€)Y (I)/3 energy is in islands that are totally contained inside
X(I), and hence the result follows by Claim 2.

The following theorem is then a direct consequence of Lemmas 1 and 3.

Theorem 1. The energy optimal algorithm YDS is 20-competitive with respect
to maximum ltemperature.

3 Online Algorithms that are not O(1)-competitive

We show that AV R, OA and the constant temperature algorithm are not O(1)-
competitive.

Lemma 4. The online algorithms AVR, OA are not O(1)-competitive with re-
spect to temperature. More precisely, the competitive ratio of these algorithms
must depend on either the number of jobs, or the cooling rate b.

Proof. We use a variation of an instance from [18]. Let r; = 1 — 1/¢, w; = 1/i
and d; = 1 for 1 < ¢ < n. For instances with a common deadline, as is the case
here, AVR and OA behave identically. Let ¢ = 1/n. The YDS schedule runs jobs
at a constant rate of 1. Using Lemma 1 it is sufficient to show that there is some
c-interval where the energy used by OA and AVR is w(c). In particular, during
the c-interval [1 — 1/n, 1] it is the case that AVR and OA are running at a rate
of 2(logn), and hence the energy used during this c-interval is £2(clog® n).

In the reasonable case that the thermal threshold T, 4, of the device is known,
the most obvious temperature management strategy is to run at a rate that leaves
the temperature fixed at Tp,q;. We call such a strategy O(1)-competitive if on
any instance I on which this constant temperature algorithm missed a deadline,
every feasible schedule causes a temperature of 2(Tnaz)-

Lemma 5. The speed scaling algorithm that runs at such a speed that the tem-
perature remains constant at the thermal threshold T qy is not O(1)-competitive.

Proof. Suppose at time 0 a task with work z (which will be specified later) and
deadline € arrives. We will think of ¢ as going to 0. Suppose that the temperature
at time 0 is 0. We choose z such that it is equal to the maximum work that the
adversary can get done by time ¢ while keeping the temperature below Ty, 4./ k.
Using equations from [2] for the case that e = 3, which probably are too involved
to repeat here, x = @((%)1/362/3). The crucial fact in the term above is that
the maximum work that the adversary can do depends on € as €2/3. On the
other hand, the constant temperature algorithm at temperature 7,4, has power
P = bTp4:/a and hence speed (bTmM/a)l/?’ and work @((bTmM/a)l/?’e), which
depends linearly on €. Thus, for any constant k, the ratio of the work completed
the adversary over the work completed by online goes to infinity as € goes to 0.

4 The Online BKP Algorithm

In this section we first introduce some notation, then state the BKP algorithm,
and then show in Theorem 2 that BKP is O(1)-competitive with respect to
temperature. Theorem 2 compares the maximum energy used in a c-interval by
BKP to the maximum energy used in a c-interval by YDS. Thus our analysis
of YDS is a component of our analysis of BKP. It was shown in [2] that BKP
always produces a feasible schedule. We assume without loss of generality that
all release times and deadlines are integers.

Let w(t,t1,12) denote amount of work that has arrived by time ¢, that has
release time > ¢; and deadline < ¢3. Let k(%) be the maximum over all # > ¢ of
(w(t,et—(e—1)t',t"))/(e(t' —1)). Note that w(t,?1,t2) and k(¢) may be computed
by an online algorithm at time ¢.

BKP Algorithm Description: At time ¢, work at rate ek(t) on the unfinished
job with the earliest deadline.

Theorem 2. The online algorithm BKP is 20e*2°~1(6(=%5)* + 1)-competitive
with respect to temperature.

Proof. By Theorem 1, it is sufficient to show that BKP uses at most factor of
e®2*71(6(=25)* + 1) times as much energy over any c-interval as does YDS.
Again let Y be the maximum energy used by YDS in any c-interval.

Let w(t1,t2) denote the work that has release time > #; and has deadline
< 3. Let y(t) denote the rate of work of the algorithm YDS at time ¢. Let ¢(¢)
be the maximum over all ¢; and 3, such that ¢; <t < t3, of w(t1,t2)/(t2 —t1).

For purposes of analysis, we will assume BKP always runs at a rate ¢(¢) >
k(t), even if there is no work to do. It is obvious that ¢(t) > k(¢) for all . We
can then assume that in the input instance it is the case that y(t) amount of
work arrives with release time t and deadline ¢ + 1. Under this transformation,
the YDS schedule remains the same, and ¢(¢) will not decrease. The fact that
q(t) will not decrease follows from the definition of ¢(t).

Let X be an arbitrary c-interval. Let X* (respectively Xff_) denote the k",
c-interval immediately to the left (respectively right) of X. That is, the left
endpoint of X* is kc units to the left of X. Let the interval Z be defined to
be X UX! U X_}_. We now show that the energy used by BKP during X is at
most 60‘20‘_1(6(ﬁ)°‘ +1)Y. As X is an arbitrary c-interval, this will imply the
result.

We decompose the original instance as follows: Let wq(t) = y(¢) if ¢ € Z and
0 at all other times. Let wq(t) = y(t) — w1 (t) for all £. Let

!
De=rr W1(t)

ma
t’<t§t” tll _t/

n
2o=rr W2(t)

and 92 (t) = tJI<Ilta<t// t// _ t/

q1(t) =

Note that ¢(¢) < q1(t)+¢2(t) since y(t) = wy(t)+w,(t) for all each £. By convexity
of the speed to power function P(s), it follows that ¢(¢)* < (q1(¢) + ¢2(¢))* <
2a_1(QI(t)a+Q2(t)a) and thus ZtGX q(t)* < 2a_1(2teX ql(t)a+2teX q2(t)%).
We now wish to upper bound the sum), x ¢1(¢)*. We follow the method
used in [2]. Since X C 7, it is the case that >, x q1(t)* <>, q1(t). Let I(t)
be the maximum over all 1, such that ¢; < ¢, of Ei:tl wy(z)/(t—1t1). Similarly,
let r(t) be the maximum over all ¢3, such that ¢ < ¢3, of E?:t wy(x)/(t2 — 1).
Clearly, ¢(t) < max({(t),r(t)), and hence ¢(t)* < {(£)* + r(¢)*. We will show
that both Y, _ I(t)*, and Y2 _ r(t)* are at most (329)* Do yt)* =

(529)% Tz wa(t)”. This implies 3, a1(1)* < 2 (325) Toepwn(t)
The following result was first proved by Hardy and Littlewood in [8] and
later simplified by Gabriel [6]. Tt can also be found in [9, Theorem 393 and 394].

Fact: If y(1),...,y(n) are arbitrary non-negative integers, let [(¢) be the max-
imum over all v, such that 1 < v < ¢, of ZZ:U y(k)/(t — v+ 1). Let s(y) be a
positive increasing function of y. Let y(1),...y(n) denote the sequence of y(7)

in decreasing sorted order. Then Y_;_, s(l(k)) < >/ _, 5(2?21 y(3)/k).

We now apply this fact. We rescale time so that these timesin Z are 1,..., 3c.
We set y(i) equal to wq(7) in the fact above. Further, we set s(y) = y®. Note that
since wy(t) = 0 fort ¢ Z, no other work affects [(t) other than the y(¢)’s fort € Z.
Thus the definition of [(¢) in the fact is identical to the previous definition of /(¢).
We can then conclude that), ., [(t)* is maximized if for all 7, y(i) > y(i + 1).

In this case, () = Y0_, y(k)/t. Thus, 3y, {)* < Tyey (2;21 y(i) /t) ~

Hardy showed [7] as a special case of Hilbert’s theorem (see [9, Theorem

326]), that >, (22:1 y(z)/t) < (3%9)* >-, y(t)*. Note that in these inequal-
ities the y(i)’s may be arbitrary, and all that is required of « is that a > 1.

Thus it follows that », ,I(t)* < (ﬁ) Y ez wit)¥. A similar analysis

of r(t) shows that >, ., r(t)* < (ﬁ) Diezwi(t)® Thus, > qi(t)* <
2 (ﬁ) > ez wi(t)¥. Finally by the definition of w1 () and y(t), Y-, , w1(t)* =

Siez y(t)* < 3Y. Thus T, ar()* <6 (225) V.

We now bound the term EteX q2(t)*. Note that wy(¢) = 0 at all timest € 7.
By the definition of Y, any c-interval contains at most ¢(Y/c)'/® amount of work
in the YDS schedule. Thus, any c-interval Xi or X* for k > 2 contains at most
c(Y/e)' ! work in wy(t), it follows that ¢o(t) < (Y/e)'/®. Thus

2ot <y ((%)”“)a =Y o=

teX teX teX

Combining the above, we have that for any c-interval X

DT <Y 2 () + q2(1)%) < 277N (6(—

*+1)Y
)+
tex tex

Since the BKP algorithm works at rate at most ek(t), the energy used during
the c-interval X is at most e*2°71(6(=2-)* + 1)Y.

a—1

5 Using KKT to Prove YDS Correct

We show that the energy optimality of the YDS schedule follows as a direct
consequence of the well known KKT optimality conditions for convex programs.
We start by stating the KKT conditions. We then show how to express the
energy problem as a convex program. And then show the result of applying the
KKT conditions to this convex program.

Consider a convex program

min fo(z)
fi(z) <0 it=1,...,n
Assume that this program is strictly feasible, that is, there is some point z where
where f;(z) < 0fori=1,...,n. Assume that the f; are all differentiable. Let A;,
i=1,...,n be a variable (Lagrangian multiplier) associated with the function

fi(z). Then a necessary and sufficient KKT conditions for solutions # and A to
be primal and dual feasible are [3]:

fi(z) <0 i=1,...,n
A >0 r=1,...,n
Aifi(z) =0

V fo(z) + _E AV fi(z) =0 (5)

—~ o~~~
> W o
D =

To state the energy minimization problem as a convex program, we break
time into intervals tg,...%t,, at release times and deadlines of the tasks. Let
J (i) be the tasks that can feasibly be executed during the time interval I; =
[tistiy1], and J~1(j) be intervals during which task j can be feasibly executed.
We introduce a variable w; ;, for j € J(¢), that represents the work done on task
J during time [¢;,¢;41]- Our (interval indexed) mathematical program P is then:

min F (6)
w; < Z “’m j=1,...,n (7)
i€J—
m , L W; g «
Z Ljesti) Wi (tig1 —t;) < E (8)
i=1 ti+1 _tl

w; ;>0 1=1,...,m j € J(i) 9)

We now apply the KKT conditions to this convex program. We associate a
dual variable §; with equation j in line 7, a dual variable § with the equation in
line 8, and a dual variable v; ; with equatlon 1,7 in line 9. We now evaluate line
5 of the KKT conditions for our convex program. Looking at the component of
equation 5 corresponding to the variable F, we get that § = 1. Looking at the
component of equation 5 corresponding to the variable w; ;, we get that

a—1
E wz Wk
—3; + Bp (reJt — %, =0 (10)

tig1 —t

Consider a w; ; such that w; ; > 0. We know that by complementary slackness
(equation 4) that it must be the case that +; ; = 0. Hence,

5 = a (EkGJ wzk) - (11)

tigr —1t

Hence, the interpretation of the dual variable d; is a times the speed at which
the processor runs during interval i raised to the power of (e — 1). This quantity,
and hence the speed of the processor, must be the same for each interval 7 during
which task j is run. Now consider a w; ; such that w; ; = 0. Rearranging equation

10 we find that .

) Wi,

Yij = a (Ztkej » k) i (12)
i+1 —

Then ~v; ; will be non-negative if the processor is running faster during interval
¢t than during the intervals where task j is run.

Thus we can conclude that a sufficient condition for a primal feasible solution
to be optimal is that:

— For each task j, the processor runs at the same speed, call is s; in the
intervals 7 in which task j is run.

— And the processor runs at speed no less than s; during intervals 7, such that

J € J(%), in which task j is not run.

The solution produced the the YDS algorithm clearly has these properties

and hence is optimal.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.
18.

J. Augustine, S. Irani, and C. Swamy. Optimal power-down strategies. In [EEFE
Syposium on Foundations of Computer Science, 2004.

N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed scaling to manage energy
and temperature. In IEFFE Syposium on Foundations of Computer Science, 2004.
S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University Press,
2004.

D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyukto-
sunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware
microarchitecture: Design and modeling challenges for next-generation micropro-
cessors. IEEE Micro, 20(6):26-44, 2000.

G. Buttazzo. Hard Real-Time Computing Systems. Kluwer, 1997.

R. M. Gabriel. An additional proof of a maximal theorem of hardy and littlewood.
Journal of London Mathematical Society, 6:163-166, 1931.

G. H. Hardy. Note on a theorem of hilbert. Math. Zeitschr., 6:314-317, 1920.

G. H. Hardy and J. Littlewood. A maximal theorem with function-theoretic ap-
plications. Acta Mathematica, 54:81-116, 1930.

G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University
Press, 1952.

S. Irani, , R. K. Gupta, and S. Shukla. Algorithms for Power Savings. In
ACM/SIAM Symposium on Discrete Algorithms, 2003.

S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management
in systems with multiple power saving states. Trans. on Embedded Computing Sys.,
2003. Special Issue on Power Aware Embedded Computing.

T. Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52—
58, 2001.

K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for your
erg. In Scandanavian Workshop on Algorithms and Theory, 2004.

J. E. Sergent and A. Krum. Thermal Management Handbook. McGraw-Hill, 1998.
K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware microarchitecture. In International Symposium
on Computer Architecture, pages 213, 2003.

V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez. Reducing
power in high-performance microprocessors. In Design Automation Conference,
pages 732-737, 1998.
http://www.usatoday.com/tech/news/2004-05-07-intel-kills-tejas_x.htm.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In IEEFE Syposium on Foundations of Computer Science, page 374, 1995.

