Competitive Online Scheduling for Server Systems

Kirk Pruhs~
Computer Science Department
University of Pittsburgh
Pittsburgh, PA 15260

kirk@cs.p

ABSTRACT

Our goal here is to illustrate the competitive online scHiedure-
search community’s approach to online server schedulivigipms
by enumerating some of the results obtained for problenadee!
to response and slowdown, and by explaining some of the atend
analysis techniques.

1. INTRODUCTION

Our goal here is to illustrate the competitive online schieadu
research community’s approach to online server schedplioly-
lems by enumerating some of the results obtained for prablem
lated to response and slowdown, and by explaining some of the
standard analysis techniques.

We consider the setting of a collection nfjobs arriving at a
server, or multiservers, over time. Examples of possitieess in-
clude databases, name servers, web servers and operaiagisy
Letr; be the time that a job; is released to the server, ancbe the
work of J;. On ans speed server, a job with wogk is completed
at the timeC; when it has been be processed for tippgs. Online
scheduling means that the server’'s scheduling decisioneaizbe
based on any information about the jobs that will arrive ia ti-
ture. If jobs can have widely varying work, the scheduler tines
able to preempt jobs (and later resume execution from thet pbi
preemption) in order to be able to guarantee any reasonatitap
mance. There are two standard Quality of Service (QoS) nmmesssu
for a job. Theresponseof a job isF; = C; — r;, and theslow-
down of a job isS; = F;/p;. For example, a job with slowdown
2 behaves as though it was served by a dedicated slf)mdver.
One can then obtain a QoS measure for a schedule by takirdg the
norm,1 < p < oo, of the QoS measures of the jobs. Mostly com-
monly the/; norm, the average, and tlig, norm, the maximum,
are considered.

We will explain the standard analysis techniques in theedraf
the basic scheduling problems of minimizing the averagpaese
and the average slowdown on one server. The most obvious-wors
case measure of the goodness of an online scheduling algorit
is the competitive ratio. An online scheduling algoritidnis c-
competitive if:

max)
I Opt(I)
whereA(T) is the QoS measure of the schedule produced by algo-
rithm A on inputl, andOpt(I) is the optimal QoS value. So for

example, ifA is 2-competitive, it means that on all instancéd)
is at most twice optimal. Sometimes one wishes to measure the

<c

*Supported in part by NSF grants CNS-0325353, CCF-0448196,
CCF-0514058 and 11S-0534531.

itt.edu

competitive ratio as a function of some parameter, say tinebeu
of jobs. In this case, the maximum is over all instantesth that
parameter.

Since the competitive ratio is a worst-case concept, onergen
ally thinks of the competitive ratio as the pay-off of a ganeeypd
between the online scheduling algorittMnand an adversary. Al-
gorithm A’s move at timet is to specify the job that it will run,
and the adversary’s move at timés to specify the jobs that arrive
at timet. The payoff of the game is then essentially the relative
difference between the QoS measureddd schedule and the QoS
measure of the optimal schedule.

The algorithm Shortest Remaining Processing Time (SRRT) al
ways runs the job with the least amount of unfinished works It i
well known that SRPT is 1-competitive (optimal) for average
sponse. Further, SRPT is 2-competitive for average slowda]

In each case, the standard proof uses a local competitivengs-
ment. Local competitiveness is both the most commonly wesedl,
generally the most straight-forward to apply, analysistegue. To
understand the local competitiveness analysis techniquel(t)

be the increase of the QoS measure for algorithrat time ¢ for
some understood input. If the QoS measure was average re-
sponse, them(¢) is the number of jobs released but unfinished
by A at timet. If the QoS measure was average slowdown, then
A(t) is the number of jobs released but unfinishedbwgt timet
divided by the aggregate work of these jobs. An algoritAnis
locally c-competitiveif for all inputs I, and all timeg, it is the case
that A(t) < c¢- Opt(t). An algorithm that is locally:-competitive

is thenc-competitive sinced(I) = [, A(t)dt < [, c- Opt(t)dt =

¢ - Opt(I). To apply local competitiveness to show that SRPT is
optimal for average response, ones needs to show that ahed,t
SRPT always has the least possible number of unfinished Jabs.
apply local competitiveness to show that SRPT is 2-comnipefior
average slowdown, one needs to show that at all timeSRPT

is at most twice optimal with respect to the objective of mmiiz-

ing the number of unfinished jobs at timelivided by the work

of these jobs. Note that when applying local competitivenese
may potentially have to compare the online algoritirto a differ-

ent schedule for each time

SRPT is eclairvoyant online algorithm in that it requires knowl-
edge of the work the jobs. A clairvoyant scheduling alganith
may be implementable in a web server serving static corttentt
would not be implementable in an operating system where trk w
of the jobs is unknown. The nonclairvoyant algorithm Shetrte
Elapsed Time First (SETF) runs the job that has been run > le
so far. SETF is also called Least Attained Service and Foteyt-
Background. SETF can be seen as a highly idealized form of the
process scheduling algorithm used by Unix. The competititie
of SETF can be linear in the number of jobs. To see this, con-

sider the case of jobs with work that arrive at the integer times
0,1,...,n— 1. Fornow letA\ = 1 + % From timen/2 to time
n, SETF ha®(n) unfinished jobs withl /n amount of unfinished
work, resulting in average response®fn). But SRPT completes
earlier arriving jobs before starting later arriving jolasd has an
average response 6f(1).

More generally, the competitive ratio of every determinist-
gorithm is Q(n'/?) [20]. We give the adversarial strategy that
establishes this lower bound for an arbitrary deterministiline
nonclairvoyant algorithmd. The adversary releasgégobs at time
zero, each with work /k more than the amount that processes
these jobs by timé& — 1 (the fact that this is possible follows from
the fact thatA is deterministic). It is easy to see that the adversary
can have one unfinished job attirhe 1. Then the adversary brings
in a stream of jobs of work /k for k2 time units. This results in a
competitive ratio ford of Q(n'/?) sincen = k°.

QoS
Optimal

Figure 1: QoS curves of an almost fully scalable online algo-
rithm A and the optimal algorithm for a system with the thresh-
old property.

In spite of this negative worst-case result for SETF, thexipnd-
cess scheduling algorithm seems to perform reasonablyowetl
a wide range of inputs. To give one possible explanationHisr t
phenomenon, Kalyanasundaram and Pruhs in [15] introdubed w
has come to be calld@esource Augmentation Analysis. The term
resource augmentation analysis and the notation that we use here
were introduced in [22]. To understand the motivation faorce
augmentation analysis, note that it is common for systerpesses
the following informally definedhreshold property:

1. The input or input distributions are parameterized byaal lo
A, and the server is parameterized by a capacityhe QoS
provided by the server is reasonable if the Idaid at most
90% of the server capacity, and the QoS is horrible ik is
more that 110% ofi.

For example, ad/ | M | 1 queue with the SRPT scheduling dis-
cipline has the threshold property [3]. The instances thaivg&d
that SETF is2(n)-competitive with respect to response have the
threshold property. Figure 1 gives an example of the Qo Secianv

a system that has the threshold property if the optimal sdivey
algorithm is used. From Figure 1 it seems that the onlinedahe

ing algorithmA performs reasonably well in comparison to the op-
timal scheduling algorithm. But one can see that the coriyeeti
ratio of A is huge by looking at the vertical gap between the curves
when the load is near capacity To explain why the curves for

A and optimal in Figure 1 are close, we need to also measure the
horizontal gap between curves. We would like to say somgthin
like A performs at most times worse than optimal on inputs with

s times higher load. Notice that multiplying the load by a &acif

s is like slowing the server down by a factorafSo this is roughly
equivalent to saying thad with ans times faster server is at most

c times as bad as optimal. Formally, an online algoritins an
s-speed c-approximation algorithm if

A(D)
<
M opa () =€

where A (I) is the QoS measure of the schedule produced by al-
gorithm A with a speeds server on input/, andOpt: (1) is the
optimal QoS value achievable on a unit speed server. Eaflgnti
the best possible resource augmentation result that onelitaim

is what is called aralmost fully scalable algorithm, which is one
that is(1 + €)-speedD(1)-competitive algorithm. The constantin
the O(1) term will generally depend oa. If you have a system,
that with the optimal offline scheduling algorithm, has theesh-
old property with threshold:, and an online algorithm that is
s-speedc-competitive, where is modest, then the system with

as the scheduling algorithm has the threshold property thitssh-
old 1/s. So in particular, an online scheduling algorithm that is
almost fully scalable has essentially the same threshadlueaspti-
mal offline algorithm.

In [15] it was shown, using local competitiveness, that SWEB
almost fully scalable for average response. More preci#elyas
shown that SETF i§1 + ¢)-speed 1 + 1)-competitive. This illus-
trates a phenomenonthat is common in many scheduling pnsble
There is an almost fully scalable algorithm even thoughetae
no O(1)-competitive algorithms. The intuition behind this is that
if a system’s load is near its capacity, then the online salezdhas
no time to recover from even small mistakes. Many of the gfron
worst-case lower bounds for online scheduling problentz etin-
put instances where the load is essentially the capacityeo$ys-
tem. One example is the instance showing that the cometétio
of SETF isQ2(n).

2. RANDOMIZED ALGORITHMS

Another approach to obtaining positive results is to comsidn-
domized scheduling algorithms. Generally randomizednendil-
gorithms are compared against alplivious adversary that must
specify the input before the online algorithm begins. If Huwer-
sary is allowed to change the future input in response togthdom
events internal to the scheduling algorithm, then generatidom-
ization is not so helpful to the online algorithm.

As an example, consider the problem of minimizing response
on one server. One nonclairvoyant algorithm that is dised$s
many introductory texts on operating systems is the Mudtil
Feedback algorithm, which can be viewed as mimicking SETF,
while keeping the number of preemptions per job to be lolyarit
mic. In MLF, there are a collectioo, Q1, . . . of queues. There is
a target processing timg, associated with each queue. Typically,
T, = 271, but some results require more slowly growing targets,
e.0.T; = (1 + ¢)**'. Each jobJ; gets processed fdf; — T;_;
units of time while in queu€); before being promoted to the next
queue(;+1. MLF maintains the invariant that it is always running
the job in the front of the lowest nonempty queue.

[16] propose a randomized variation, call RMLF, of MLF that
is is identical to MLF except that the target of each job inwpie
Q; is 27! minus an exponentially distributed independentrandom
variable. [16] shows that RMLF i®(log nloglogn) against an
adversary that at all times knows the outcome of all of the ran
dom events internal to RMLF up until that time. This accodats
the possibility of inputs where future jobs may depend onphst
schedule. [8] show that RMLF i®(log n)-competitive against an
oblivious adversary. Both of these analyses used local etitive-
ness.

Every randomized algorithm i€(log n)-competitive for aver-
age response [20] against an oblivious adversary. Sinsdgha
cost-minimization problem, we can apply Yao's techniquieteer
bound the competitive ratio. That is, we need only give auinp
distribution on which the ratio of the expected responseafgrde-
terministic algorithmA divided by the expected optimal response
is Q(logn). The input distribution consists df jobs released at
time zero. The work of these jobs is exponentially distetoinivith
mean 1. By the memoryless property of the exponential Histri
tion, expected remaining processing times are indeperafest
At time k — k%/4, A hask®/* unfinished jobs, but SRPT would
only havek®'*/ log k unfinished jobs. The competitive ratio df
can then be forced tlwg n by bringing in a stream of short jobs.

The fact that SETF/MLF is almost fully scalable, and RMLF
is optimally competitive amongst randomized algorithmsyvjgle
support for the adoption of MLF for process scheduling witan
operating system.

3. AVERAGE FLOW AND STRETCH ON
PARALLEL SERVERS

In the standard model for parallel scheduling, thererargen-
tical servers. No job can be run simultaneously on more thnen o
server. On parallel servers, SRPTs$log n)-competitive for min-
imizing total response, and this is known to be optimal withdn-
stant factors [19]. This analysis of SRPT used a type of looal-
petitiveness that was widely applied in subsequent pap&re
main idea was to bound the additional unfinished work, on jobs
with work at mostw, that SRPT has in comparison to the adver-
sary. A simpler analysis of SRPT's performance for minimigi
response is available in [18]. In [22] it is shown that thatPSR
is a(2 — 1/m)-speedl-competitive algorithm for minimizing to-
tal response time on parallel servers. SRPT is 14-comyeefibir
minimizing total slowdown on parallel servers [21].

Resource augmentation is also possible on the number adrserv
So ans-serverc-competitive algorithmd is c-competitive with the
optimal schedule witk times fewer servers [22]. However it seems
that there many fewer interesting results in the literathia use
server augmentation as compared to speed augmentation.

4. IMMEDIATE DISPATCH

An online scheduling algorithm has thramediate dispatch prop-
erty if it assigns a jobJ; to a server at time;, and all jobs are
processed exclusively on the server that they are assidmede-
diate dispatch might be desirable for example if you had & loa
balancer sitting in front of a server farm, and migrationgodifs
between servers was undesirable. In [2] an immediate disat
gorithm is given that has the same competitive ratio for ager
response as SRPT, namélylogn). In this algorithm, when a job
J; is released, it is assigned to the server that has been adsign
the minimum aggregate work of jobs with work abgut Note
that this assignment rule ignores information such as whéte
current load on each server or which jobs have actually bean p

cessed or completed at the current time. Each server rurjslibe

it is assigned using SRPT. The key observations in the aisalys
this algorithm are that: for allv, the aggregate work of jobs with
work aboutw is evenly spread over the various servers, and hence
the difference in the total work processed by any timé&jobs with
work at mostw on any two servers i©(w). It is then established
that A(t) = O(Opt(t) + mlogn). The bound then follows by
local competitiveness.

5. ¢» NORMS OF FLOW AND STRETCH

Often server systems do not implement the best known algo-
rithms for optimizing average Quality of Service (QoS) ofiton-
cern of that these algorithms may be insufficiently fair tdivid-
ual jobs. One standard way to compromise between optimfaing
the average and optimizing for the worst case is to optintieé,
norm, generally for something like = 2 or p = 3. For exam-
ple, the standard way to fit a line to collection of points igtok
the line with minimum least squares, equivalerly distance to
the points, and Knuth’'sgXtypesetting system uses tlfie metric
to determine line breaks. Thg, 1 < p < oo, metric still con-
siders the average in the sense that it takes into accourglads,
but because? is strictly a convex function of,, the/,, norm more
severely penalizes outliers than the standandorm.

In [5] it is shown that are na°")-competitive online clairvoy-
ant scheduling algorithms for ady norm,1 < p < oo of either
response or slowdown on one server. This is a bit surprisihg,
least for response, as there are optimal online algoritt8RRT
and FIFO, for thd; andl., norms of response. However, in [5]
it is shown that the standard clairvoyant algorithms SIFSRBT
are almost fully scalable fdy, norms of response and slowdown on
one server. They showed that the nonclairvoyant algoritBEEF
and MLF are almost fully scalable for response objectivefioms,
but not for slowdown objective functions. In contrast, Rd&obin
(RR), which at all times shares the servers equally amotigsta
finished jobs, is not almost fully scalable even for respaisgec-
tive functions. This is a bit surprising as starvation aaoide is an
often cited reason for adopting RR.

The analysis of these algorithms in [5] used local competiti
ness. For concreteness, consider ghenorm of response. The
increased; . (¢t) of thel, norm of response for an algorithAy .
at timet is then twice the aggregate ages of the unfinished jobs at
time ¢. Thatis, if you integrate over timeof the aggregate ages
of the unfinished jobs at timg you give half of thel, norm of
response. Thus to establish loeadompetitiveness for thé& norm
of response for an algorithm, ., it is sufficient to show that at all
times the aggregate ages of the unfinished jobsifar. is at most
ctimes the least possible aggregate ages for unfinishedjdinsea
t using a unit speed processor.

[10] show how to combine immediate dispatching algorithm of
[2] with a scheduling policy such as SJF to obtain an almdst fu
scalable algorithm fok, norms of response and slowdown on mul-
tiservers. The analysis is essentially a local competérggiment
similar to the analysis of SJF and SRPT in [5].

6. WEIGHTED FLOW TIME

In the online weighted response problem, each jothas an
associated positive weight; that is revealed to the clairvoyant
scheduler at the release time The objective function i$~ w; F;.

If all w; = 1 then the objective function is total response, and if
all w; = 1/p; then the objective function is total slowdown. Some
systems, such as the Unix operating system, allows diffgren
cesses to have different priorities. In Unix, users canheaitce

command to set the priority of their jobs. Weights provide ayw
that a system might implement priorities.

For the moment let us focus on one server. For weighted re-

sponse, [9] show that besides being a sufficient conditiocall
c-competitiveness is a necessary condition for an algoriihine
c-competitive. The idea is that if an online algorithm wasreve
worse than locally:-competitive at some time, then the adversary
could then bring in a stream of dense short jobs that conéilid

tle to the weighted response if they are processed as thisg,arr
but will increase the weighted response tremendously i tre
delayed at all. The most obvious algorithm is Highest DgriSiitst
(HDF) which always runs the job of highest density. The dignsi
of a job is its weight divided by its work. The competitiveicadf
HDF isw(1). To see this consider an instance consisting of many
low weight and high density jobs, and one high weight and fowe
density job, all released at time 0. HDF will run the high dgns
jobs first, and thus will not be locally competitive at the ¢imight
before it finishes the high weight job, since at this time ighti
be possible to have only one low weight job left unfinishedisTh
instance demonstrates that the scheduler has to balansedret
delaying low density jobs, and delaying low weight jobs. ndsi
this intuition, [4] give a©(log W')-competitive algorithm that par-
titions the jobs based on approximate weight, and then riisTS
on the jobs in the partition with maximum total weight. Héié

is the largest weight. The analysis is a local competitigsraggu-
ment that is a variation on the local competitiveness argurfoe
SRPT. For a long time it was universally believed that theisted
anO(1)-competitive algorithm for weighted response, and finding
such an algorithm was viewed as the most important opengmobl
in competitive online scheduling. Recently, Nikhil Banaat Ho-
Leung Chan have shown that that the consensus intuition was n
correct by showing that there is 14(1)-competitive algorithm for
weighted response.

Using a local competitiveness argument, [9] show that HDF is
an almost fully scalable algorithm for weighted responsena
server. This analysis uses a concept/technique, fradtiesponse,
that has proved useful in several other contexts ph.@t) be the re-
maining unfinished work on jobat timet. Then the increase in the
fractional weighted response objective at titris the sum over of
the unfinished jobd; of wz”p—(t) So for example if a joly; has%
of its original work remaining to be done, thei only contributes
% of its weight to the increase of the fractional weighted cese
objective. HDF is an optimal algorithm for fractional wetgh re-
sponse, and the optimal weighted fractional response &lgla
lower bound for the optimal weighted response. Thus it ifi-suf
cient to show that the weighted response fbD F . is compet-
itive with the fractional response faif DF;. This is established
by showing that by the time thaf D F3 is close to finishing a job
Ji, which is whenJ; might not contribute much to the fractional
response, thel D F ;. has finished/;. As a human prover, it is
often easier to deal with fractional response than integgponse
since fractional response has a more continuous strucfinis.is
much the same reason it is easier to deal with linear progtiaams
integer linear programs.

[6] give almost fully scalable algorithms for the weightéd
norms of response. For the parallel server setting, [1H gilower
bound on the competitive ratio of any algorithm@g+/W), and
[9] show that HDF i2 + ¢)-speed)(1)-competitive.

7. AMORTIZED LOCAL COMPETITIVE-
NESS

An interesting phenomenon arises when we try obtain a resour

augmentation analysis for RR for response on one servdrg &

the following lower bound instance for RR, based on an earlie
stance in [20]. Leto = 0, andt; = 1 + €. There are two jobs

of work s released at timé,, and one job is released at each time
ti, ¢ > 1, with work z(4) that is exactly the same work that RR
has left on each of the previous jobs. To guarantee that the ad
versary can finish the job released at titeoy time ¢;1, 7 > 1,
lett;+1 = t; + z(i). Then the total response for the adversary is
O(3_", 1/i*), and the total response for RREg> " | 1/i*~).

This instance shows that RR is ispeed)(1)-competitive, and
RR is not locally competitive for any constasnt But, at least for
this instance RR is (2 + ¢)-speedO(1)-competitive. In a land-
mark paper, Edmonds [12] proved RR is in f4@t+ ¢)-speed
O(1)-competitive. Since a local competitiveness argument cén n
work here, Edmonds had to develop a new technique: amortized
local competitiveness. Led be an arbitrary online scheduling al-
gorithm. LetA(t) be the rate of increase of the objective at time
t. The online algorithmA is amortized locally c-competitive with
potential function ®(¢) if the following two conditions hold:

Boundary: @ is initially 0, and finally nonnegative.
Job Arrival: ® does not increase when a new job arrives.

Completion: ® does notincrease when either the online algorithm
or the adversary complete a job.

Running: For all timest when no job arrives or is completed,

A(t) — cOpt(t) + %ﬁt) <0 1)

Observe that whe(t) is identically zero, we have ordinary lo-
cal competitiveness. To see that amortized leeadmpetitiveness
implies global competitiveness, let, ¢, . . . be the events that ei-
ther a job is released, the online algorittdncompletes a job, or
the adversary completes a job. L&{®(¢;)) denote the change in
potential in response to event Integrating equation 1 over time,
we get that

A +) A(®(t:)) < cOpt(I)

By the job arrival condition, and the completion conditiare can
conclude thatA(I) + ®(c0) — ®(0) < cOpt(I), and finally, by
the boundary condition, we can conclude tH&f') < cOpt(I).
Intuitively on can think of the potential functio® as a bank.
WhenA(t) < cOpt(t), A is doing better than it needs to, and can
save money in the bank. Whef(¢) > cOpt(t), A is doing worse
than it can afford to, and thus must withdraw money from thekba
to pay for this. The conditions above just imply tbdatan not cheat
the bank, for example, by not paying back money that it boehw

8. ARBITRARY SPEED-UP CURVES

An immediate question that one has to ask when formalizing a
scheduling problem on parallel servers is whether a simgdean
simultaneously run on multiservers. In some settings ttay not
be possible; in other settings this may be possible but teedp
up that one obtains may vary. Thus one can get myriad differen
scheduling problems on parallel servers depending on what o
assumes. A very general model is to assume that each job has a
speed-up function that specifies how much the job is sped @mwh
assigned to multiservers. More formallyseed-up function I'(s)
measures the rate at which work is finished on the jotpfocess-
ing resources (sayservers) are given to the job.

A job is parallelizableif T'(s) = s. Parallelizable work has the
property that if you devote twice as many servers to the wibrk,
completes at twice the rate. At the other extreme, a jaoristant
if I'(s) = cforall s > 0 and some constamt > 0. Devoting
additional processing resources to constant jobs doessoltin
any faster processing of these jobs. In fact constant jobgptate
at the same rate even if they are not run. The normal multserv
setting can be modeled by the speed-up funcfigs) = s for
s < landI'(s) = 1fors > 1. Thatis, ajob is parallelizable on
one server, but assigning the job to multiservers does ript he

In any real application, speed-up functions will be sutdinend
non-decreasing. A speed-up function is sublinear if dowpthe
number of servers at most doubles the rate at which work is-com
pleted on the job. A speed-up function is non-decreasimgigas-
ing the number of servers does not decrease the rate at whith w
is completed on the job. One can also generalize this sodbat j
are made of phases, each with their own speed-up function. As
sume that a nonclairvoyant scheduling algorithm does notkn
the speed-up function of any job.

In a remarkable analysis, Edmonds showed that RR i ¢)-
speedO(1)-competitive for jobs with phases that have speed-up
functions that are sublinear and non-decreasing [12]. Altzoy of
this general resultis that RR (& + ¢)-speed)(1)-competitive for
response on one server. This results extends, with sliglelker
bounds, to the case where RR is given extra servers instéastef
servers.

Edmonds first transforms each possible input into a cantinica
put that is streamlined. An input &reamlined if: (1) every phase
is either parallelizable or constant, and (2) the adversaaple to
execute each job at its maximum possible speed. This imihlas
at any one time, the adversary has only one parallel job piease
which it is allocating all of its resources. The idea of thiznis-
formation is that if RR is devoting more resources to somekwor
than the adversary, it is to the adversary’s advantage teerntak
work be constant work that completes at the rate that theradme
was originally processing that work. In contrast, if the exbary
is devoting more resources to a job than is RR, and the adyersa
has no other unfinished jobs, then it is to the adversary’asdge
to make this work to be parallelizable. As a consequenceisf th
transformation, you get that the adversary is never behR®R
any job. The fact that the input is streamlined means thatowuit
loss of generality one can assume that RR has one servered spe
s = 2+ e and Opt has one server of speed 1.

We now turn to the potential functiob used by Edmonds. The
potential®(t) = F(t) + Q(t) whereQ(t) is total sequential work
finished by RR by time minus the total sequential work finished
by the adversary by time To defineF'(¢) requires some prelim-
inary definitions. Foru > t, definem.(t) (¢.(t)) to be number
of fully parallelizable (sequential) phases executingarm@R at
time w, for which RR at timeu has still not processed as much
work as the adversary processed at timéet n, (t) = m.(t) +
Lu(t). ThenF(t) = [fu(mu(t), €u(t))du, wheref,(m,€) =
ﬁw As the definition of the potential function sug-
gests, Edmond’s analysis of RR is quite complicated.

9. MULTICAST PULL SCHEDULING

In a multicast/broadcast server system, when the servelssen
a requested page/item, all outstanding client requestsispage
are satisfied by this multicast. The system may use broatleast
cause the underlying physical network provides broadcasthe
basic form of communication (e.g. if the network is wirelesshe
whole system is on a LAN). We restrict our attention to theecas

that the objective function is total response. Multicadt chedul-
ing is a generalization of weighted response. If one rdsttite
instances in multicast pull scheduling such that for eaaepall
requests for that page arrive at the same time, then thecastpull
scheduling problem and the weighted response schedulitdgm
are identical.

Assume for now that all pages have the same work/size, say as
would be the case for a name server. The most obvious algorith
is Most Requests First (MRF), which broadcasts the pagetivith
most outstanding requests. At first, one might even be teinpte
to think that MRF is optimal. However, [17] show that MRF is
not evenO(1)-speedO(1)-competitive. To see this consider the
instance where at time O there is single request to eaglpaiges,
and at each time, 0 < t < n, there2 requests ta other special
pages. At each timd/ RF, broadcasts the special pages. Thus
at timen + s, M RF will not be locally O(1)-competitive since
it hasn — s pages with outstanding requests, but it is possible to
have finished all the pages. By bringing in a stream of reguest
new pages, one obtains an instance where the competitiveofat
MRF is Q(n). This lower bound instance shows that the online
scheduler has to be concerned with not only the popularithef
requests, but also with how to best aggregate jobs. Fuft8r17]
show that na@(1)-competitive algorithm exists for this problem.

The lower bound instance for MRF actually contains the key
insight that relates multicast pull scheduling to schedplhvith
speed-up curves, and thus suggests a possible algorithter. tAé
online algorithm has finished a page that was requested hya si
gle client, the adversary can again direct another clieneduest
that page. The online algorithm must service this seconadasitps
well. In contrast, the optimal schedule knows not to injigive
any resources to the first request because the broadcasefeet-
ond request simultaneously services the first. Thus, eveungth
the online algorithm devotes a lot of resources to the firgtiest
and the optimal algorithm devotes no resources to the figstast,
it completes under both at about the same time. In this redaed
work associated with the first request can be thought of as-“co
stant”. This suggests that the real difficulty of broadcelsesluling
is that the adversary can force some of the work to have a@ohst
speed-up curve.

Formalizing this intuition, [13] give a method to converyaron-
clairvoyant unicast scheduling algorithto a multicast schedul-
ing algorithmB. A unicast algorithm can only answer one request
at a time, as is the case on a standard web server. [13] shatvs th
if A works well when jobs can have parallel and constant phases,
then B works well if it is given twice the resources. The basic idea
is thatB simulatesA, creating a separate job for each request, and
then the amount of time thd® broadcasts a page is equal to the
amount of time thatl runs the corresponding jobs. More formally,
if Ais ans-speed:--competitive unicast algorithm, then its counter-
part, algorithmB, is a2s-speed:-competitive multicast algorithm.

In the reduction, each request in the multicast pull probieine-
placed by a job whose work is constant up until the time ththeei
the adversary starts working on the job or the online alorifin-
ishes the job. After that time, the work of the replacemehtig
parallel. The amount of parallel work is such thhawill complete

a request exactly wheB completes the corresponding job. Using
the RR for algorithmA, one obtains an algorithm, called BEQUI
in [13], that broadcasts each page at a rate proportionhktaum-
ber of outstanding requests. Using Edmonds’ analysis of &R f
jobs with speed-up functions, one gets that BEQUlis- ¢)-speed
O(1 + 1/¢)-competitive. In fact, all the results in [13] hold if the
pages have arbitrary sizes under the assumptions thatidrescl
have to receive a page in order.

The most popular multicast pull scheduling algorithm foitun its energy in some small period of time, making it impossiole

work pages in the computer systems literature is LongestMifsi any online algorithm to be locally competitive at that tiniEhus
(LWF). LWF always services the page for which the aggregate amortized local analysis is the tool of choice.
waiting times of the outstanding requests for that page igiina Letus considerthe objective of fractional weighted regaqius

mized. In the natural setting where for each page, the réques energy. The increase of the objective for an algorithrat timet is
rival times have a Poisson distribution, LWF broadcasté eage wa(t) +pa(t) =wa(t) +sa(t)®, wa(t) is the fractional weight
with frequency roughly proportional to the square root efplage’s of the unfinished jobs at timefor algorithm A, pa(t) andsa(t)

arrival rate, which is essentially optimal. [14] show th&VE is 6- are the power and speed of algorithMnat time ¢, andpa(t) =
speedO(1)-competitive, but is not almost fully scalable. Itis not sa(t)“ is the speed to power function. Thus the fundamental local
too difficult to see that there is no possibility of provingchia re- competitiveness equation 1 in this case is equivalent to:

sult using local competitiveness. The authors of [13] wexeatle

to obtain a potential function that would allow them to edisiixthis wa(t) + sa(t)® — c(wopt(t) + sop:(t)*) de(?) <0 (2
result via amortized local competitiveness. This illussaone po- dt

tential difficulty a human prover might encounter when skmg For reasons explained in [1], that we will not go into here, tiat-
for an amortized local competitiveness argument. One fs&@®der | algorithm to consider is the algorithr that uses HDF for
a potential function to establish the fundamental inedydlifor job selection, and always runs at a powar(t) = wa(t). Then
all configurations. But there can be configurations, in wtitoh equation 2 reduces to

online algorithm is not doing badly, yet the natural potainfiinc-

tions aren't sufficiently refined to establish inequalityThe rather o dd(t)

complicated analysis given in [14] sums up the total costwH_ 2wa(t) = e(wo(t) + 50(1)7) + dt =0, ®)

d the total cost to the ad dth mij . .
and sums up the total cost to the adversary, and then conipgares Here one canthink ob(¢) as a measure of the energy in a bank/battery

terms.) (1) : .
attimet. Then=;= is then a measure of power representing the
rate that energy is flowing into or out of the bank/battery.

10. S_PEED SCA_IfING o N First consider the simpler case where all jobs have unit work

In addition to the traditional goal of efficiently managirige and unit weight, [7] shows that the algorithrhis 2-competitive

and space, many computers now need to efﬁciently,managerpowe for the objective function of fractional response plus ggerLet
usage. For example, Intel's SpeedStep and AMD's PowerNOW g — (o, — 1) /a. If you havew jobs with equal release times, then
technologies allow the Windows XP operating system to dyinam Opt is proportional tas” . Thus we know that, in order fcb to

cally change the speed of the processor to prolong batferylh have enough energy stored to pay for the future, assumingitha
this setting, the operating system must not only hayebaselec- more jobs arrive, that it must be the case that) > w.a(t)* ™ —
tion policy to determine which job to run, but alscspeed scaling wopt(t)?T. Unfortunately setting the potential function equal to

policy to determine the speed at which the job will be run. un-c the right-hand side of this inequality does not satisfy ¢iqua3
rent CMOS based processors, the speed satisfies the wellnknow ywhenw , (¢) > wop(t) and a new job arrives. The problem is

cube-root-rule, that the speed is approximately the cubteafthe that the incremental cost td in this situation is much larger than
power. Energy is power integrated over time. The operaty®§ s the incremental cost for the adversary, and the potentiadtion
tem is faced with a dual objective optimization problem asoith does not decrease enough to pay for this. Thus [7] use thiedela

wants to conserve energy, and optimize some Quality of 8ervi potential function
(QoS) measure of the resulting schedule.

If there is an upper bound on energy used, then there 3(i¢- B(1) = 20 5 —)5t
competitive online speed scaling policy for total respornkEeun- ® (B+1) (max(0, wa(t) = wo (1))

derstand intuitively why this is the case, consider theasitun when
ywny Note that this potential function decreases more quickéintthe

the first job arrives. The scheduler has to allocate a confta f did ial ion in the situation dis@gah
tion of the total energy to this job; otherwise, the schedwizuld Irst candidate potentia L!I’lCtIOh In the situation dis@csa ove.
[7] shows that by rounding the power usedvyip to the nextin-

not beO(1)-competitive in the case that no more jobs arrive. How- btai " laorithm for th L
ever, if many more jobs arrive in the future, then the scherchis teger one obtains a 4-competitive algorithm for the objedtinc-
tion (integral) response plus energy.

wasted a constant fraction of its energy on only one job. By it i . .
9y y J 4 Let us turn our attention back to the general case of jobs with

ating this process, one obtains a bound,¢f) on the competitive A . . RN
g p of) P arbitrary work and arbitrary weight, [7] show that algonithA is

ratio with respect to total response. o ith he obiective of fractional d
Albers and Fujiwara [1] proposed combining the dual objesti O(1)-competitive with respect to the objective of fractionaigrde
response plus energy. When the cube-root rule holds, theebm

of energy and response into the single of objective of enesgyl i g ; i . .
plus total response. Optimizing a linear combination ofrgpe itive ratio is approximatel2.52. To define the potential function
used in [7], letwa(h) be a function oft denoting the total frac-

and total response has the following natural interpretatiSup-
P g P P tional weight of the jobs unfinished by that have inverse density

pose that the user specifies how much improvement in response . . o L
call this amounp, is necessary to justify spending one unit of en- of at leasth. The inverse density of a job is the work divided by the
| weight. The potential function used in [7] is then

ergy. For example, the user might specify to the Windows XP op

erating system that he is willing to spend 1 erg of energy ftben 9 oo s
battery for a decrease of 3 micro-seconds in response. Heent @(t) = m/ (wa(h) (wa(h) — (B+ 1)wo(h))) dh
optimal schedule, from this user’s perspective, is the daleethat h=0)

optimizesp = 3 times the energy used plus the total response. By rq he objective of energy plus (integer) weighted respofig
changing the units of either energy or time, one may assuftie Wi ghows that an algorithm that tries to mimic algoritahis a bit less

out loss of generality that = 1. _ _ than 8-competitive when the cube-root rule holds.
Local competitiveness is generally not achievable in speat

ing problems because the adversary may spend essentladly al

11. CONCLUSIONS

Recall that our goal here is to illustrate the competitivdinen
scheduling research community’s approach to online ssprexdul-
ing problems by enumerating some of the results obtainepkédr-
lems related to response and slowdown, and by explaining 6m
the standard analysis techniques. Our goal was not to frasen
exhaustive survey. Necessarily our choices for resultotercis
idiosyncratic. We offer our apologies to the authors of thenyn
fine papers not discussed here. The closest thing to an dkleaus
server of competitive online scheduling is probably theveyiarti-
cle [23].

[4] N. Bansal and K. Dhamdhere. Minimizing weighted flow
time. In Proc. 14th Symp. on Discrete Algorithms (SODA),
pages 508-516. ACM/SIAM, 2003.

[5] N. Bansal and K. Pruhs. Server scheduling in fhenorm:
A rising tide lifts all boats. IrProc. 35th Symp. Theory of
Computing (STOC), pages 242—-250. ACM, 2003.

[6] N. Bansaland K. Pruhs. Server scheduling in the weiglyped
norm. Manuscript, 2003.

[7] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for
weighted flow time. IPACM-SIAM Symposium on Discrete
Algorithms, 2007.

I have been asked to compare competitive analysis to stichas [g]
analysis. Given my immature knowledge of stochastic schedu
ing, | am somewhat reluctant, but here is my best shot. Let us

L. Becchetti and S. Leonardi. Non-clairvoyant scheaglio
minimize the average flow time on single and parallel
machines. IrProc. 33rd Symp. Theory of Computing

start with the disadvantages of competitive analysis. &iam-
petitive analysis is a worst-case concept, the results emerglly
overly pessimistic for normal inputs. Also competitive bsis
only bounds the performance relative to the optimal alboitit

does not give any absolute measure of performance. So ittmigh

recommend a scheduling algorithm to run on your server farm,
it wouldn't tell you how many servers to buy to handle a certai
number of users. Let us now turn to the advantages of coriveetit
analysis, including resource augmentation analysis. dirsethat
for server systems, the key property of a good online sclireglul
algorithm is that it should scale as well as the optimal salied
algorithm with the load. Algorithms that ar@(1)-competitive, or
almost fully scalable, have this scaling property. Thisnsedo
be the reason that competitive analysis generally recordmgre
“right” algorithms, for example, SRPT for average slowdoam

a web server, SETF for average response on an operatingrsyste

(STOC), pages 94-103. ACM, 2001. To appear in JACM.
[9] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela] an

K. Pruhs. Online weighted flow time and deadline
scheduling. IRANDOM-APPROX, volume 2129 of ecture
Notesin Computer Science, pages 36—47. Springer, 2001.

[10] C. Chekuri, S. Khanna, and A. Kumar. Multi-processor
scheduling to minimizé, norms of flow and stretch.
Manuscript, 2003.

[11] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for weigght
flow time. InProc. 33rd Symp. Theory of Computing
(STOC), pages 84-93. ACM, 2001.

[12] J. Edmonds. Scheduling in the dafkeoretical Computer
Science, 235:109-141, 2000.

[13] J. Edmonds and K. Pruhs. Multicast pull scheduling: whe
fairness is fineAlgorithmica, 36:315-330, 2003.

and LWF for average response on a multicast name server. Fur-[14] J. Edmonds and K. Pruhs. A maiden analysis of longest wai

ther, one can reasonably obtain a competitive analysis feida
variety of scheduling applications, without requiring padilistic
assumptions about the input distribution. It is often neaclwhat
the “right” probabilistic assumption is, and if one assurseme
general probability distribution, the resulting analyisioften in-
tractable. Consider for example a multicast-pull web servie
apply stochastic analysis would require assuming somée joab-
ability distribution over file size and popularity, that igu need
to know how file size correlates with popularity. It is probabot
so clear a priori what the “right” assumption is for a web serv
or even that there is a “right” assumption. For example, jiiist
distribution may depend on whether the client-side cacpwiy
is something like LRU, which doesn'’t discriminate based da fi
size, or is something like Greedy-Dual-Size, which is mdtely
to evict large files. If one assumes a general joint distidouthen
it is probably not so tractable to analyze algorithms usinghsa
general assumption (although in fairness to stochastiediding,
part of this intractability derives from the stochasticedhling re-
searchers’ desire for exact, instead of approximate,t&sul

12. REFERENCES

[1] S. Albers and H. Fujiwara. Energy-efficient algorithros f
flow time minimization. InSymposium on Theoretical
Aspects of Computer Science, pages 621-633, 2006.

[2] N. Avrahami and Y. Azar. Minimizing total flow time and
total completion time with immediate dispatching Rroc.
15th Symp. on Parallel Algorithms and Architectures(SPAA),
pages 11-18. ACM, 2003.

[3] N. Bansal. On the average sojourn time under
m—m—21—srpt.Opererations Research Letters,
33(2):195-200, 2005.

first. In Proc. 15th Symp. on Discrete Algorithms (SODA).
ACM/SIAM, 2004.

[15] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyanceJournal of the ACM, 47:214-221, 2000.

[16] B. Kalyanasundaram and K. Pruhs. Minimizing flow time
nonclairvoyantlyJournal of the ACM, 50:551-567, 2003.

[17] B. Kalyanasundaram, K. R. Pruhs, and M. Velauthapillai
Scheduling broadcasts in wireless netwodsirnal of
Scheduling, 4:339-354, 2001.

[18] S.Leonardi. A simpler proof of preemptive flow-time
approximation. IMApproximation and On-line Algorithms,
Lecture Notes in Computer Science. Springer, 2003.

[19] S.Leonardiand D. Raz. Approximating total flow time on
parallel machines. IRroc. 29th Symp. Theory of Computing
(STOC), pages 110-119. ACM, 1997.

[20] R. Motwani, S. Phillips, and E. Torng. Non-clairvoyant
schedulingTheoretical Computer Science, 130:17-47, 1994.

[21] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E.
Gehrke. Online scheduling to minimize avarage strech. In
Proc. 40th Symp. Foundations of Computer Science (FOCS),
pages 433-443. IEEE, 1999.

[22] C. Phillips, C. Stein, E. Torng, and J. Wein. Optimal
time-critical scheduling via resource augmentation.
Algorithmica, pages 163-200, 2002.

[23] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In
Handbook on Scheduling. CRC Press, 2004.

