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ABSTRACT

A major problem in web database applications and on the Internet
in general is the scalable delivery of data. Multicast is one of the
standard techniques to achieve scalable data dissemination. How-
ever the use of multicast introduces a variety of data management
issues at the server. In this paper we examine three major prob-
lems namely, the push popularity problem, the document classifi-
cation problem and the bandwidth division problem, that arise in
the design of a hybrid data dissemination scheme. We propose so-
lutions to these problems and argue that these are essentially the
best possible solutions. In particular, we argue for having a mul-
ticast pull mode, in addition to the traditional unicast pull mode
and the commonly proposed multicast push mode. We give a sim-
ple method for estimating the current popularities of pushed doc-
uments. We give an algorithm for determining which documents
should be pushed/pulled, and for determining how much of the
server bandwidth should be devoted to push/pull. We report on
experiments with our system that validate our algorithms.

1. INTRODUCTION

It is indisputable that the web has brought massive amounts of in-
formation to everyone’s fingertips, changing forever the way we
learn the news, perform research, do business, deal with disasters,
etc. It is also indisputable that a major problem in these appli-
cations is the scalable delivery of data. This problem is particu-
larly acute exactly at the time when the scalability of data delivery
is most important. Examples that one can find cited in the popu-
lar press include: news about the terrorist attacks at msnbc. com
during 9/11/2001, virus patches from mcafee . com during the re-
cent Slammer virus, and weather reports at the Federal Emergency
Management Agency fema.gov during hurricane Isabel around
September 18, 2003.

Several front-end and back-end web server techniques have been
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proposed to address this scalability problem. These are predomi-
nantly data caching and replication methods; the front-end ones are
along the client/web server communication path and include proxy
caches [14] and server-side caches [13] whereas the back-end tech-
niques are along the path from the web-server and database servers
and include web server cache plug-in mechanisms and asynchronous
caches [20, 21, 6, 22]. However, the scalability gains that these
approaches can offer are constrained by the underlying traditional
unicast pull, where data are delivered from servers to clients on
demand.

The experience with the use of broadcasting as a means of dis-
seminating information to large client populations in wireless set-
tings has led to the realization that a wide range of emerging web
database applications can also benefit from a (broadcast) multi-
cast push mode of data dissemination. The literature to date sug-
gests that multicast be reserved solely for hot/popular pushed doc-
uments [1, 17]. In this paper, we argue that data can be more ef-
ficiently delivered to a large number of users using a hybrid dis-
semination scheme that includes a multicast pull mode in addition
to the multicast push and the traditional unicast modes. To test
our hypothesis, we have built a prototype middleware that supports
such a hybrid dissemination scheme and acts as a reverse-proxy to
a Web server for the delivery of documents which are materialized
views. The prototype has allowed us to investigate the interaction
of these dissemination modes, and to build the argument in favor of
our proposed hybrid scheme by answering in sequence each one of
the following questions.

First, we need to establish if a multicast pull channel should even
be present. Our server' uses the multicast pull when it receives near
simultaneous requests for the same not-hot document. It has been
observed that in practice the document popularities satisfy a Zipf
distribution [8]. We show experimentally that if document popu-
larities have a static Zipf distribution, then a multicast pull channel
gives a modest, but noticeable, improvement in average response.
We then consider the case of dynamic distributions with moving
hot spots. That is, the popularity distribution remains Zipf, but the
identity of the popular documents change over time. For example,
consider a cricket web site. The biography page for a particular
player may suddenly become very popular after he makes a partic-
ularly good play (say bowling a hat-trick), or a particularly bad play
(say an out hit wicket). We show that multicast pull significantly
improves average response time during the transition period when
the server is adjusting to this change in document popularities.

UIn the rest of the paper, the term server refers to both the prototype
middleware and the web/database back-end servers.



The second question pertains to the estimation of current popular-
ity of pushed documents. We call this the push popularity problem.
The rationale for investigating the push popularity problem is that
documents are assigned to dissemination modes depending on their
popularity. If a pushed document becomes sufficiently less popu-
lar then it should no longer be pushed. One solution for the push
popularity problem proposed in [29] was to occasionally drop each
pushed document from the push channel, thus forcing clients to
send explicit requests. This solution has the disadvantage that, if
the document is very popular, then the server might be temporarily
flooded by requests for this document. We propose that the server
publish a report probability for each pushed document. Then when
a client receives a user request for a pushed document, it submits
an explicit request for that document with probability equal to this
report probability. The report probabilities should be small enough
that server is almost surely not going to be overwhelmed with re-
quests for pushed documents. We show that if the goal is to min-
imize the maximum relative inaccuracy observed in the estimated
popularities of the pushed documents, then each report probability
should be set inversely proportional to the estimated access prob-
ability for that document. We believe that our solution is both a
more scalable, and more straight-forward, solution to the problem
of estimating the popularity of pushed documents.

Having established the necessity of multicast pull and an effective
way to estimate push popularity, we can proceed with the assign-
ment of documents and the allocation of bandwidth to each dis-
semination mode. In our terminology, the document classification
problem is the issue of determining which documents are pushed
and which documents are pulled; the bandwidth division problem
is the issue of determining how much of the the server bandwidth
should be devoted to pushed documents and how much of the server
bandwidth should be devoted to pulled documents when the server
is loaded. We will argue that the document classification prob-
lem and the bandwidth division problem are interrelated. We solve
these two problems simultaneously using a modification of an algo-
rithm proposed in [7]. In [7], it is shown how to minimize the band-
width given a fixed latency per request. The bandwidth division
problem is the dual of this problem. That is, the bandwidth division
problem asks how to minimize latency given a fixed known system
bandwidth. Using the algorithm in [7] as a subroutine, we show
how to simultaneously solve the document classification problem
and the bandwidth division problem in linear time.

The primary contribution of this paper is that it presents a unified
and rigorous analysis of hybrid data dissemination schemes involv-
ing unicast and multiple multicast modes. The specific contribu-
tions of the paper are as follows:

o The first contribution is the quantification of the advantage
of including a multicast pull component.

o The second contribution is our algorithm for the push popu-
larity problem.

o The third contribution is the essentially optimal algorithm for
document classification and bandwidth division.

To the best of our knowledge, we deal with these issues in a more
complete way than previous papers in the literature. Although we
present these issues in the context of a wire-line environment, our
future work is to look at these contributions in the context of data
dissemination to mobile users in a wireless environment.
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Figure 1: Our system architecture

Note that once the bandwidth division and document selection prob-
lems have been solved, one is then left with the problem of schedul-
ing documents within the multicast push channel, the multicast pull
channel, and the unicast channel. Scheduling documents within a
particular channel has been well studied. In particular, in the wire-
less environment, the problem of scheduling within a broadcast pull
channel has received much attention [2, 3, 15, 26, 27, 30]. These
scheduling problems are orthogonal to our bandwidth division and
document selection problems, where those problems address when
to send and our work is addressing the issue of what to send.

The remaining of the paper is structures as follows: Section 2 de-
scribes our middleware server and our middleware clients which
form the core of our prototype system. We also discuss the rationale
behind our design choices. In Section 3, we report on experiments
with our system that validate our algorithms. In section 4 we very
briefly survey related work. Section 5 summarizes our observations
and contributions.

2. SYSTEM DESCRIPTION

In this section, we briefly describe our middleware, whose config-
uration is shown in Figure 1. The configuration demonstrates the
main building blocks, each tied to a particular data management
function in multicast environments (document selection, schedul-
ing, consistency, caching, and indexing). The middleware has server-
side and client-side components; the client-side sits under a client
application such as a browser. The server-side might either sit un-
der a web server, or be an alternative to a web/database server. Most
of the server-side building blocks have a corresponding module on
the clients and vice versa.

Both the client and server sit above some multicast capable service.
The middleware is connected to the multicast service through a thin
Transportation Adaptation Layer (TAL). So the identity of the mul-
ticast service is not particularly relevant to our middleware. For our
experiments in this paper we use Java Reliable Multicast Service
(JRMS) [25]. JRMS guarantees the reliable delivery of multicast
packets. We maintain two multicast channels, one for pull and one



for push.

2.1 Client Description

In order to allow the clients to quickly determine whether a needed
document(materialized view) is in the current hot broadcast set, the
server broadcasts an index of sorted documents on the multicast
push channel.

When the client receives a request from the application client for a
document D;, the client takes the following actions.

o The client first checks whether D; is listed on its stored ver-
sion of the most recent index of the documents on the mul-
ticast push channel. If D; is in the index, the client sends
an explicit request for this document to the server with the
report probability s; specified for that document in the in-
dex, and then waits for D); to appear on the multicast push
channel.

e If D; is not in the latest stored version of the multicast push
index, then the client makes a direct request for DJ; to the
server using HTTP/TCP.

¢ After making this request, the client monitors the TCP con-
nection, and both multicast channels. When the client re-
ceives D;, it passes the document back to the application
client.

The client must monitor the multicast push channel even if the doc-
ument was not found in the push index because it it possible that
the server has just started to push the document. If client did not
monitor the multicast push channel, we could have a race condition.

The server may close the TCP connection if it determines that it
will not serve the document over this TCP connection. In case that
the client sees the TCP connection being closed, it knows that the
server intends to send the document on one of the multicast chan-
nels, and the client just continues to monitor the multicast channels.

2.2 Server Description
When the server receives a request for a document 1); from the
client over a TCP connection, one of three actions can be taken.

o If the requested document is currently on the push queue, the
count of recent access to I; is incremented by 1/s;. Recall
s; is the probability that a client reports an access to D);. So
on average this request represents 1/s; unreported requests.
Further the server closes this TCP connection as it will serve
this document over the multicast push channel.

e If D; is not on the push channel then the count of recent ac-
cess to [); is incremented by 1. If a request for D; is already
on the server’s out going queue of pulled documents, then
the count of the current outstanding requests for IJ; is incre-
mented. If the outstanding request count for DJ; is over the
predefined multicast pull threshold then all TCP connections
for this document are closed. The server can close these TCP
connections because it knows that it will transmit 2; on the
multicast pull channel.

e If a request for [; is not on the outgoing queue of pulled
documents, then this request is enqueued on the pull queue
with the outstanding request count initialized to 1.

There is a thread that dequeues documents from the push and pull
queues and transmits the documents. The documents on the push
channel are broadcast using a flat broadcast, that is each document
on the push channel is pushed with equal frequency. The fraction
of time that this thread chooses from each queue is specified by
the bandwidth division algorithm. When a request for 1); reaches
the front of the outgoing pull queue, its request count is compared
to the multicast pull threshold. If the count is above this thresh-
old, then the document is transmitted on the multicast pull channel.
Otherwise, the request is transmitted over the open TCP channels.
All queues are processed in a FIFO manner.

Asynchronously the server has a thread to occasionally solve the
document classification problem, the bandwidth division problem,
and computes the report probabilities for the pull documents. We
now describe in more detail how this is accomplished.

2.2.1 Document Classification and Bandwidth Divi-
sion

To understand the algorithm for document classification and band-
width division, it is first necessary to understand the different na-
ture of average latency for the multicast push and for the unicast
pull channel. The average latency for documents on the multicast
push channel is roughly linear in the number of documents on this
channel. Specifically, the average latency for a document on the
multicast push channel is half of the period of the broadcast cycle
since we assume that documents are broadcast sequentially. Note
that this assumes that the time to broadcast a single document is
negligible with respect to the period of the broadcast cycle. How-
ever, the delays for pulled documents are radically different from
those of pushed documents. If document ¢ is assigned to unicast
pull, a client request for ¢ is queued at the server for transmission.
Let S; be the size of document . Basic queuing theory tells us that
the corresponding queuing delay is either O(S;) or unbounded, de-
pending on whether the server load is less than 1 or not. Thus, to
minimize average latency, the server should require as many doc-
uments as possible be pulled, as long as the load for the pulled
documents is bounded by a constant less than 1.

Our solution to document classification and bandwidth division is
to use an integrated algorithm that minimizes average latency. The
starting point is a method suggested by [7] that minimizes the band-
width B to achieve a target latency L. The known method is not
directly applicable to document classification and bandwidth divi-
sion because our goal, on the contrary, is to minimize the latency
L given a fixed amount of available server bandwidth B. However,
the previous method will be useful as a component of the final al-
gorithm.

For the purpose of analysis, client requests follow a Poisson pro-
cess in which document ¢ is requested with probability p; and the
aggregate request rate is A. The popularity profile p; and the rate
A can be determined by the push popularity algorithm described in
Section 2.3. Algorithm 1 uses a target average latency L. Its goal
is, as in [7], to partition the documents between unicast pull and
multicast push and to split the system bandwidth so as to minimize
the system bandwidth B required to achieve latency L. If docu-
ment 7 is assigned to the pull channel, it will use bandwidth Ap;.S;.
If document ¢ is assigned to the push channel, it will use bandwidth
S; /L, which is also the rate at which the document must be broad-
cast to give worst-case response time L. It was then stated [7] that



a document should be pushed if

Si
ApiSi > T 1

Algorithm 1 follows this approach. However, as we are interested
in the average latency of a pushed document instead of the worst-
case latency, we need to make the following modification to equa-
tion (1). The unicast pull term Ap;S; in (1) is the bandwidth re-
quired to obtain average latency L, and thus the multicast push
bandwidth also needs to be the bandwidth required to achieve an
average latency of L for the comparison to be meaningful. In this
case, the bandwidth required by this document on the push channel
to achieve average-case latency L is S;/(2L). Thus a document
should be pushed if Ap; S; > S;/(2L). The resulting subroutine is
shown below as Algorithm 1 and its parameters are summarized in
Table 1.

Parameter | Description |

number of documents

observed request rate A

pull over-provisioning factor
current required latency

total available system bandwidth
array of document sizes S;

array of document probabilities p;
tolerance factor

IV IS EIRE!

Algorithm 1 tryLatency

Require: n, A\, L, p as defined in Table 1
Ensure: Returns the number & of items pushed given that average
latency of L is required

1: while max — min > 1 do
2:  k « (max + min)/2

3 if (prAL) > 1/2 then
4 min < k

5:  else

6 max «— k

7 end if

8: end while

9: Return &

The bandwidth for the push channelis now > ;. o/ py Si/(2L)

and thet’ bandwidth for the unicaAst requests is Z':3P1S1 /(ML) Ap: Si.
In particular, if L increases, while all other variables remain fixed,
then more documents are pushed, an observation that will be used
to derive the final algorithm.

The second and more substantial modification to the previous argu-
ment is due to the mismatch between the objectives of Algorithm 1
and the desired objectives for bandwidth division and document se-
lection. Algorithm 1 minimizes the amount of required bandwidth
to achieve a fixed L, whereas our goal is to minimize I given a
fixed deployed bandwidth B. In some sense, our problem is the
dual of the one that Algorithm 1 solves.

Algorithm 2 solves the bandwidth division and document selection
problems, and uses Algorithm 1 as a subroutine. The algorithm
employs a parameter @ > 1 that measures the target level of over-
provisioning for the pull channel. More precisely, the actual band-
width we reserve for pull is o times what an idealized estimate
predicts. Queuing theory asserts that & > 1 guarantees bounded
queuing delays, whereas @ < 1 leads to infinite queuing delays.

As such, the parameter « can also be thought of as a safety margin
for the pull channel. The algorithm also uses a parameter € > 0,
which is an arbitrarily small positive number, and finds a solution
that has latency within € of the optimum for the given bandwidth
and popularities.

Algorithm 2 Bandwidth Division and Document Classification

Require: n, A\, a, B, S, p, and € as defined in Table 1, and p; >
piy1 1 <i<n)

Ensure: £ is the optimal number of documents on the push chan-
nel, pullBW is the optimal pull bandwidth, pushBW is the op-
timal push bandwidth

. while IMax — IMin > € do

L + (IMax + IMin)/2

k « tryLatency(L, p, A, n)

10:  pullBW < «(rspt, — 1spt,,)

11:  pushBW < B — pullBW

12:  if pushBW > (sizeTotalx/(2L)) then

I: for:=1,...,ndo

20 rspt; <—1spt;_; + piSiA

3:  sizeTotal; = sizeTotal;_; + S5
4: end for

5: IMax ¢ sizeTotal, /B

6: IMin «+ 0O

7

8:

9:

13: IMax < L
14:  else

15: IMin « L
16:  endif

17: end while

Algorithm 1 assumes that documents have been sorted in non-increasing

order of popularity, i.e., p; > pi+1 (1 < 7 < n). It can be eas-
ily seen that if ¢ is pushed, then 7 < ¢ should be pushed as well.
Then, the problem becomes that of finding a value of & such that
the multicast push set {1, 2, ..., k} minimizes the latency L given
a certain bandwidth B and pull over-provisioning factor . The
optimal value £* can be found by trying all possible values of L,
computing the document & that achieves L. with Algorithm 1, and
checking that this value of & satisfies the bandwidth requirements.
The pull bandwidth requirement is o 7, 41 Ap: Si, which leaves
pushBW =B —a ZZ_H Ap: Si for the push channel, and average

latency for the pushed documents of S % S;/2pushBW. If this
computed average latency for the pushed documents is greater than
L, then L needs to be increased, otherwise L needs to be decreased.

Algorithm 2 follows this approach but with two optimizations. In
the first place, the algorithm performs a binary search over all pos-
sible values of L and stops when the interval for L is bounded by
the tolerance . Moreover, the algorithm pre-computes the sums
¥ ApiS; and 3°F_ S; in the arrays rspt and the sizeTotal re-
spectively (Lines 1-4). The purpose of these computations is to use
the totals in the place of the sums in the bandwidth computations.
Because of this optimization, the portion of the algorithm before
the binary search runs in linear time. The maintenance of the rspt
and sizeTotal arrays can be implemented in logarithmic time per

query using standard augmented binary tree techniques [11]. Thus,
the running time of algorithm 2 is O(max(n, log( %)}) We
expect that as a practical matter that the running time will be O(n).

2.3 Report Probabilities
Document selection and bandwidth division rely on estimates p of
document popularity. The values of p can be estimated by sampling



the client population as follows. The server publishes a report prob-
ability s; for each pushed document ¢. Then, if a client wishes to
access document ¢, it submits an explicit request for that document
with probability s;. In principle, clients would not need to submit
any request for push documents, but if they do send requests with
probability s;, the server can use those requests to estimate p;. At
the same time, the report probability s; should be small enough that
server is almost surely not going to be overwhelmed with requests
for pushed documents. In particular, we consider the objective of
minimizing the maximum relative inaccuracy observed in the esti-
mated popularities of the pushed documents. In this case, we show
analytically that each report probability should be set inversely pro-
portional to the predicted access probability for that document.

First, the server calculates the rate 3 of incoming reports that it can
tolerate. Presumably, 3 is approximately equal to the rate that the
server can accept TCP connections minus the rate of connection
arrivals for pulled documents. Therefore, the value of 3 can be
estimated from the access probabilities and the current request rate,
all scaled down by a safety factor to give the server a little leeway
for error. Then, the s;’s have to be set such that Ele Apisi < 3,
where documents 1, ... % are on the push channel. The expected
number of reports p; that the server can expect to see for ¢ over
a unit time period is Ap;s;. Using standard Chernoft bounds, the
probability that number of reports is more than (14 §)u; is roughly

—u;8?

e~ + , and that the probability that number of reports is less than
2

(1—6)p; is roughly e 4 Tt the goal is to minimize the expected
maximum relative inaccuracy of the reports, all of the upper tail
bounds should be equal and all of the lower tail bounds should be
equal. That is, all u; should be equal, or equivalently it should
be the case that for allz, 1 < ¢ < k, s; = ﬁ. Hence, each
document should have a report percentage inversely proportional

to its access probability.

3. EXPERIMENTS

The simulation environment we used in our experiments is a pro-
totype of the system we explained in Section 2. Sitting on top of
the middleware client was a simulated application client generating
Poisson requests for fixed modestly sized documents with a Zipf
distributed probability distribution.

We restricted our simulation to fixed sized documents for a cou-
ple reasons. One reason is that it is not clear what the right joint
probability distribution is between document size and popularity
[9]. Another reason is that is has been said that the correlation
between object size and popularity, if any, is weak and can be ig-
nored [8]. Finally, examination of our algorithm shows that vari-
able sized documents do not effect the choice of which items to put
on the push channel and which on the pull channels, as popularity
is the main driving force.

We ran both the client and server on the same machine to limit
the amount of noise that could be introduced because of the net-
work. We implemented a background request filler that simulates
a specified number of clients, and sends requests to the server. The
requests by the filler are treated identically to those made by our
client, except that we do not record latency for these requests. We
run our experiments for 10000 requests in order to achieve statis-

tically correct results. All the figures reflect the average results of
these runs. The computer used in these simulations was a 2.0Ghz
dual processor machine with 1.2MB of RAM and running Linux.
JRMS was used for multicasting.

[ Parameter | Value | Default
Document Size 0.5K bytes 0.5K bytes
Zipf parameter 1.1-20 L5
Multicast Pull Threshold | 2
System Bandwidth 100000 bytes/sec | 100000 bytes/sec
Request rate X 250/ sec 250/sec
Re-configuration period 1 - 60 sec 1 sec
Total items n 100 - 10000 1000
Total Requests Made 10000
Hot Spot Move Type Off, Small, Big Off
@ 1.1-4.2 2

Table 2: Simulation Parameters

The other parameters used throughout our experiment are found in
Table 2. The bandwidth split refers to the amount of the bandwidth
(as a percent) given to pull and push, respectively. The zipf param-
eter is the amount of skewness in the popularity of documents, with
1.1 being more uniform and 2.0 being more skewed. The request
rate is the average number of requests made each second into the
server, to create an overload situation. The re-configuration period
is the amount of time between execution of the document selection
module in the server. The other parameters refer to experiment spe-
cific items and are addressed within the experiments themselves.
Unless otherwise stated, all the parameters used in the various ex-
periments are the default values shown in the table.

In each experiment, we measured the average latency at the client
over a set of requests. Note that in measuring latency, there are two
factors that must be taken into account, delay at the server and net-
work delay. Because our protocol focuses on actions at the server,
the main delay that is measured in our average latency is the server
side delay. By putting the server and client on the same system, we
effectively eliminated the network delay by creating a controlled
environment, and hence network delays are not really taken into
account in our results. Different networks may effect our results
in various ways, but our savings at the server itself will still be as
reported in the experiments below.

3.1 Experiment 1: Validation of our Docu-
ment Classification and Bandwidth Divi-

sion Algorithm

Figure 2 shows the effects of various values of « on the average
latency of Algorithm 2. The curve in Figure 2 is jagged because an
infinitesimal change in o can have a discrete effect in the number
of items pushed. Figure 2 shows that the value of « that minimizes
average latency is between 2.0 to 3.0. We adopt @ = 2.0 in the rest
of the paper — although this is not the actual minimum, any value
in the range produces similarly good results. Note that as & changes
in figure 2 our system adjusts the bandwidth division and document
classification to maintain optimality. This in part explains why the
average latency is near optimal for a relatively wide range of «.

Figure 3 can be interpreted as a brute force search for a good band-
width split and document classification by trying several closely
spaced values of k and pushBW. In the chart legend, the first num-
ber in the bandwidth split refers to pull. In addition to the points



plotted in the figure, we verified that if less than half of the band-
width was devoted to pull, the latency was suboptimal. In this sce-
nario, Algorithm 2 assigns the most popular 7 documents on the
push channel, and allocates 63% percent of the bandwidth to push.
The figure shows the algorithm’s outcome with a circular point and
an arrow pointing to it. The solution produced by our algorithm is
better than any other point in the diagram. More specifically, our
algorithm chose a split of 63/37 and the closest brute force curve
in the figure is the 65/35 curve. The 65/35 line was also the low-
est in the graph. Algorithm 2 chose & = 7 point as the number
of push documents, which is also the minimum point on the 65/35
curve. Thus, Algorithm 2 chose a better bandwidth split than the
brute force approach and a document classification that was just as
good.

300

250 4

Average Latency
@ 3
o o
| |

o
o
I

50 +

0 T T T T T T T T T T T T T T
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Alpha Value

Figure 2: Effects of various « values on average latency
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Figure 3: Demonstrating the optimality of Algorithm 2 for doc-
ument classification and bandwidth division. The arrow points
to the single point found by the algorithm.

Let G(k) be the average latency if the & most popular documents
are placed on the push channel. The function G(k) is a weighted
average of the average latency for pushed documents and the av-
erage latency for pulled documents. A graph showing an ideal-
ized G(k) from [29] is shown in Figure 4. The function G(k) has
a unique local minimum, which can be be found by local search
[29]. Figure 4 shows that the minimum of G(k) is to the right of
the intersection of the push and pull curves. In this case, pulled
documents would have lower latency than pushed documents. The
actual curve that we obtained from our experiments is shown in
Figure 5. Notice that the minimum of G'(k) is to the left of the in-
tersection of the push and pull curves, and thus pushed documents

have lower latencies than pulled documents. Further, the minimum
of G(k) occurs at a relatively small value of %, and thus compli-
cated hierarchical schemes for the push channel may not be useful
in this setting. The location of the minimum is due to two comple-
mentary reasons. First, the most popular items are chosen for push
and are also those to which a Zipf (or Zipf-like) distribution gives
substantially more weight. Therefore, if a solution favors multicast
push, it will also have the largest impact on the globally average de-
lays. Second, the unicast pull curve levels off and, from that point
on, the exact choice of & has little impact on pull delay. In other
words, pull delays are practically minimized at the point k& where
the pull curve flattens out. However, k precedes the intersection
of the pull curve with the push curve, and so the overall minimum
occurs before that intersection.
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Figure 4: Relation of Push and Pull latencies as number of
items pushed is changed, according to Stathatos er al.
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Figure 5: Relation of Push and Pull latencies as number of
items pushed changes according to our experiments

In conclusion, Algorithm 2 was shown to be better than the best
value returned by a brute force search. Furthermore, the integrated
algorithm led to a behavior of the push and pull curves that differs
qualitatively and quantitatively from previously published work,
e.g., in terms of the relative behavior of push and pull delays.

3.2 Experiment 2: Report Probabilities

In order to determine the usefulness of our proposed push popu-
larity scheme, we compare it to a solution found in a comparable
work to our own. The solution for the push popularity problem
proposed in [29] was to occasionally drop each pushed document z
off of the push channel so that clients would have to make explicit



requests to 2. However, there is a danger that these explicit requests
for 7 could overload the server. Thus, in [29] it was recommended
that ¢ should be dropped as short of a period of time as possible.
The shortest possible time the the document can be dropped is one
broadcast cycle. However, we show here that even such a short drop
disrupts the server, while our proposed method does not suffer from
such disruptions.

Figure 6 shows the average latencies around the broadcast cycle
T when the most popular item is dropped from the push channel.
The figure shows a performance degradation for about 5 broadcast
cycles. Basically, looking at the graph shows that before the drop
occurs, the system is in a steady state of response times. However,
once the item is dropped down the clients are no longer getting
requests off the push channel. Instead, they must make requests
directly to the server. Based on the Zipf distribution, as mentioned
earlier, the bulk of requests were for items that were on the push
channel. Therefore, dropping an item down causes a brief but sub-
stantial influx of requests to the server. This brief surge causes
response times for requests during the given broadcast cycle and a
few subsequent cycles to suffer while the server recovers and re-
turns to its steady state.

Figure 7 shows the average latency over the next 5 broadcast cy-
cles when the 7" most popular document is dropped from the push
channel for one broadcast cycle. The flat line represents the av-
erage response time using our method for push popularity. If the
most popular document is dropped, then we see a 35% increase in
average latency over the next 5 broadcast cycles. If the 6th most
popular document is dropped, we see an 8% increase in average
latency over the next 5 broadcast cycles. This increase is in com-
parison to using the simple yet effective scheme we proposed of
simply including a popularity estimator with the broadcast index.

In fairness, our proposed method has the disadvantages that it re-
quires extra space in the broadcast index and it slightly increases
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Figure 6: Effect on latency of demoting an item.

3.3 Experiment 3: To Multicast Pull or Not to
Multicast Pull

We now compare the performance of our system with multicast
pull turned off versus multicast pull turned on. We assume a static
distribution, that is, document popularities do not change over time.
The results of this experiment are shown in Figure 8.

Figure 8 shows the average latencies with multicast pull on, and
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Figure 7: Drop down method versus our probability method.
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Figure 8: Average latencies for multicast pull On vs. multicast
pull off for static access patterns

with multicast pull off, for various § values. We found a reduction
in average latency of 66% for # = 1.2, and a reduction of 30%
for # = 1.5. For example, when the § = 1.5, the average latency
decreases from 153.9ms with multicast pull off, to 107.6ms with
multicast pull on. For the higher 8’s, the difference in average la-
tencies was not statistically significant. These results conform to
intuition. The distributions for smaller §’s are more heavily tailed.
Thus for a smaller § you would expect more requests to arrive for
pulled documents, making it more likely you would get near si-
multaneous requests for the same documents, and thus you would
expect multicast pull to be of greater advantage.

Another advantage of multicast pull is that it decreases the stan-
dard deviation of the observed latencies. Thus, with multicast pull
turned on, fewer requests will have to wait for extreme lengths. The
standard deviations are shown in Figure 9. For § = 1.5, the av-
erage latency with multicast pull off was 153.9 milliseconds, with
standard deviation of 308 ms. In contrast, with multicast on, not
only was the average latency significantly better at 107.6 millisec-
onds, but the standard deviation also improved to 226 ms.

3.4 Experiment4: Multicast Pull with Moving
Hot Spot

We examine the advantage of using multicast pull when the popu-
larities of documents changes over time, but the Zipf parameter ¢
stays fixed. We look at two modes of change:
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Figure 9: Standard deviations in latencies for multicast pull on
vs. multicast pull off for static access patterns

e The first mode is when the popularities change gradually
over time (small move). The first mode would reflect a grad-
ual client shift in interest over time.

e The second mode is when there is a sudden phase change in
the location of the hot spot (big move). The second mode
would reflect a sudden change in client interest, perhaps in
response to an important event.

Document classification is a relatively expensive operation, requir-
ing time linear in the number of documents, and the server can not
afford to always be invoking the document classification algorithm.
We show in this subsection that until the document classification is
invoked, multicast pull helps provide an intermediate form of scal-
ability.

Figures 10 and 11 show the resulting average latencies resulting
from gradual changes in popularity while varying one of ¢ or «
and keeping the other parameter fixed to its default value. In these
experiments, periodically each document would swap popularities
with the next most popular document with probability 1/2. For
example, with probability 1/2, the second most popular document
would become the third most popular document. For these experi-
ments the access probabilities change every 500 requests received
from the monitored client. These 500 requests do not include re-
quests made by the request filler.

The most interesting feature in Figure 10 is that multicast pull
is more helpful as 4 increases. More precisely, the relative im-
provement one achieves in average latency when using multicast
pull increases as 6 increases. For example, when § = 1.5, multi-
cast pull shows an improvement in average latency of 44.6%(from
217.9 ms to 120.9 ms), at § = 1.7 the improvement in average
latency is 47.1%(from 228.9 ms to 121.1 ms), and at § = 2.0 the
improvement in average latency is 50.3%(from 243.5 ms to 121.2
ms). The explanation is that for large §’s, most of the probability
is in the most popular items, so if a pull document should become
more popular, it will receive many requests before the server next
invokes the document classification algorithm.

The most interesting feature of Figure 11 is that the best choice
of « for small moves is larger than it is for a static distribution.
Recall that the optimal choice of « for a static distribution was in
the range 2.0 to 2.5. In this experiment the optimal choice for
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Figure 10: Average latency for multicast pull On vs. multicast
pull off for small move access patterns
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Figure 11: Average latency multicast pull on vs. multicast pull
off various «’s and small move access patterns

is in the range from 3.0 to 4.0. In this case, setting @ = 2 has an
average latency of 121.2ms while with = 3.5 the average latency is
74ms, a decrease of 39%. The explanation is that as there is a shift
in popularity, the popularity of the pulled documents will be greater
than estimated, and thus obviously, pull should be even more over
provisioned.

Figure 12 shows that once again multicast pull reduces the standard
deviation of the observed latencies. For # = 1.5, the standard
deviation of the latencies decreases 60% from 235ms to 93ms. Note
that the reduction in the standard deviation is greater than in the
case of static access probabilities. The reason for this is because
multicast pull provides some scalability when the pulled documents
become popular.

Figures 13 and 14 show the results of a similar experiment to
above but in this case we are looking at big moves in the popularity
of an item. In a Zipf distribution, each p; is proportional to

1
(1+ (i — b) mod n)®

for some base b, which we normally think of as 0. Periodically we
change the value of b. This simulates a sudden shift if the clients’
document interests. In this case, we again see that using multicast
pull is a significant win for larger §. As one would expect, for
both methods, the latencies are higher than in the slowly moving
hot spot experiment. Using multicast pull we see a reduction in
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Figure 12: Standard deviation on latency for multicast pull on
vs. multicast pull off for small move access patterns
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Figure 13: Standard deviations for multicast pull on vs. multi-
cast pull off for big move access patterns

average latencies. For § = 1.5 the reduction is 45% from 351.8
ms to 193.2 ms, for § = 1.7 the reduction is 40% from 263.4 ms to
159 ms, and for # = 2 the reduction is 61% from 364.7 ms to 141.8
ms. We also see again that the over provisioning factor should be
greater than for static documents.

Figure 15 shows that for big moves, multicast pull reduced the stan-
dard deviation of the latencies even more dramatically for small
moves. For # = 1.5 the standard deviation has decreased 63%
from 562 ms to 205 ms, and for & = 2 the decrease was 81% from
327 ms to 63 ms. The reason that multicast pull reduces the stan-
dard deviation more for big moves than for small moves is that the
scalability that multicast pull provides becomes more important as
the pulled documents become more popular.

Average latency is by far the most commonly used quality of ser-
vice (QoS) metric in the literature. The metric is simple and in-
tuitively appealing. However, it is also well known that average
latency is generally not the ideal system metric in that the solution
that optimizes average latency may starve some jobs. Allowing
jobs to starve is considered bad system behavior. Ideally one would
want a metric that balances the competing demands of optimizing
for the average and avoiding starvation. The standard solution is to

2P\ /P
” l) . For

use the £, norm for small p. The £, norm is ( —
example, the standard way to fit a line to collection of points is to

pick the line with minimum least squares, equivalently £2, distance
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Figure 14: Average latencies for multicast pull on vs. multicast
pull off various «’s and big move access patterns
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Figure 15: Standard deviations for multicast pull on vs. multi-
cast pull off for big move access patterns

to the points, and Knuth’s TgXtypesetting system uses the {3 metric
to determine line breaks. The £,, 1 < p < oo, metric still consid-
ers the average in the sense that it takes into account all values, but
because x” is strictly a convex function of z, the £, norm more
severely penalizes outliers than the standard £; norm.

Figures 16 and 17 show what the effect of varying « has on the dif-
ference between having multicast pull on and off for the £2 norms
latencies. We set § = 2.0. For o = 2 and small moves, the £»
norm of the latencies decreases by 78% from 475.2 ms with mul-
ticast pull off to 138.7 ms with multicast pull on. Ata = 3.5
and small moves, the decrease is 42% from 277.1 ms with multi-
cast pull off to 160.6 ms with multicast pull on. We found similar
results for big moves. These results are shown in Figure 17. For
a = 2, we see a reduction in the £» of latencies of 71.5% from
1025.3 ms to 292.8 ms. For & = 3.5 we see a reduction of 78%
from 591.1 ms to 128.64 ms. Once again this shows the scalability
provided by multicast pull. When the server become highly loaded
during popularity shifts, the system without multicast pull, expe-
riences increased latencies until the document selection thread is
invoked.

3.5 Experiment 5 - Multicast Pull Advantage
with varying Time between Reconfigura-
tion
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Figure 17: /> norms of latencies for various «’s and big move
access patterns

In this experiment, we examine the advantage of using multicast

pull when the time between invocations of document selection changes.

For this experiment, we set the # to 1.5.

Figures 18 and 19 show the results of the experiment. As one
would expect, using multicast pull is more advantageous when re-
configurations are less frequent. The obvious reason is that it is
taking the system longer to adjust to the changes in user prefer-
ences, and therefore there are many requests coming in that have to
be handled through pull.

Using multicast pull we observe a reduction in latency for small
moves of 46% when the reconfiguration is every 10 seconds, 45%
when the reconfiguration is every 20 seconds, and 55.6% when the
reconfiguration is every 60 seconds.

For big moves we observe a reduction in latency of 46.4% when the
reconfiguration is every 10 seconds, 50% when the reconfiguration
is every 20 seconds, and 53.4% when the reconfiguration is every
60 seconds.

Notice the trade off that exists between waiting too long to run
the reconfiguration and the average latencies. The longer that is
waited to reconfigure the system, the worse the response times for
clients get. However, using multicast pull can help maintain lower
latencies when the system is slow in adapting to changes in the
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Figure 18: Multicast pull on vs. multicast pull off for varying
reconfiguration times in seconds for small move access patterns
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Figure 19: Multicast pull on vs. multicast pull off for varying
reconfiguration times in seconds for big move access patterns

request patterns.

4. RELATED WORK

The general idea behind a Multicast Pull channel is not new, but the
way we are using it in this paper is different than in work previous
done on the topic. One of the key ideas behind Multicast Pull is
that it is basically a channel that pushes data that was previously
requested by users. In [16] the idea of multicast pull is presented
in terms of 1-to-N multicasting, where the data is sent to a specific
set of clients that expressed interest in the data. Other work [1, 18,
4, 31] also looks into the idea of using user requests to determine
what should be multicasted out. This set of scheduling schemes and
multicast pull papers differ in both approach and purpose to this pa-
per. These papers are looking out how to schedule items on a single
multicast (broadcast) channel using the requests from users, a topic
we are not addressing. We are looking at the usefulness of having
a Multicast Pull channel available in addition to a Multicast Push
(broadcast) channel for popular documents and a Unicast channel
to handle client requests in normal web server fashion.

Work that is closer in nature to what we are doing are the DBIS-
toolkit[5] and Air-Cache[28]. The DBIS project is similar to our
middleware in which we use multiple data dissemination channels.
DBIS uses multicast and unicast to address client needs however
looks to do so by translating between the different dissemination
methods into one overlay network. Additionally, the format of our



system, in terms of how the channels are used, is focused more
on performance and robustness than the DBIS system. Air-Cache
also uses several channels, namely Multicast Push and Unicast, to
service client requests. This is done in a similar fashion to our
system, however again no Multicast Pull channel exists.

The document classification problem was introduced in [29]. In
addition to directly related work, some other work has been done
addressing the issue of hot and cold documents and of bandwidth
division, though not in the context we are describing. In [1, 18,
4, 31] the issue of mixing pull and push documents together on
a single broadcast channel is examined. The idea is that popu-
lar documents are similarly considered hot, and are continuously
broadcast while all other documents are cold. These documents
are request through a back channel and scheduled for broadcast.
Similarly, in [1] the authors discuss how to divide the broadcast
channel bandwidth between hot and cold documents. The main
difference between previous work and ours is previous work deals
with a broadcast environment with a single channel and focuses on
scheduling items, not how to divide them into hot and cold. We
are looking into the division of both documents and bandwidth to
minimize latency.

The hybrid scheme relies on estimates of the popularity of doc-
uments in the web site because popularity determines the assign-
ment of documents to dissemination modes. Popularity estimation
can be approached separately for pulled and for pushed documents.
Pull popularity can be solved in sub-linear space by monitoring the
client request stream [12]. As for push popularity, the problem is
complicated by the absence of a client request stream. One solution
is to occasionally drop each pushed document from the push chan-
nel, thus forcing clients to send explicit requests. Such requests
can then be counted and the document popularity estimated [29].
A related problem is multicast group estimation [23], which can be
specialized as follows in our context: remove a document from the
multicast push channel and re-insert it as soon as the first request
for that document is received. The document popularity can be es-
timated by the length of time it takes for the first client request to
reach the server.

S. CONCLUSION

Scalability has been the number one problem in the efficient dis-
semination of data in the Internet. Multicast Push and peer-to-peer
techniques have been shown that offer the best promise to achieve
scalable data dissemination. Our overall research goal is to com-
bine the advantages of these two approaches in a peer-to-peer sys-
tem with built-in multicast data dissemination. In this paper, we
argued for the use of multicast pull in conjunction to multicast push
and described how this has been achieved in our prototype system.

More specifically, we proposed (1) a simple algorithm for the push
popularity problem that is more scalable in estimating the popular-
ity of pushed documents and (2) the essentially optimal algorithm
for document classification and bandwidth division. We validated
our proposed algorithm experimentally.

The last major contribution of our paper is the quantification of the
advantage of including a multicast pull component. We showed that
multicast pull is of modest, but measurably advantage at the level of
5%-25% reduction in average latency compared to pure multicast
push, when the popularity distribution is static. But multicast pull
is of significant advantage when the popularity distribution is dy-
namic. In such a dynamic environment, multicast pull provides an

intermediate form of scalability until the expensive document clas-
sification algorithm is invoked. These results are also applicable
in a mobile and wireless environment in which the primary mode
of communication supports broadcasting. In fact, we believe that
these results contribute toward realizing a wireless web in which
users are mobile.

We are currently porting our system over a multicast capable peer-
to-peer network, such as Scribe [10]. In such a system our middle-
ware nodes will become peers acting as reverse proxies to multiple
web/database servers. Hence our middleware nodes will assist each
other to deal both with the dissemination of data as well as dealing
with failures.
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