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Abstract. Speed scaling is a power management technique that involves
dynamically changing the speed of a processor. This gives rise to dual-
objective scheduling problems, where the operating system both wants to
conserve energy and optimize some Quality of Service (QoS) measure of
the resulting schedule. In the most investigated speed scaling problem in
the literature, the QoS constraint is deadline feasibility, and the objective
is to minimize the energy used. The standard assumption is that the
power consumption is the speed to some constant power α. We give the
first non-trivial lower bound, namely eα−1/α, on the competitive ratio
for this problem. This comes close to the best upper bound which is
about 2eα+1.
We analyze a natural class of algorithms called qOA, where at any time,
the processor works at q ≥ 1 times the minimum speed required to ensure
feasibility assuming no new jobs arrive. For CMOS based processors, and
many other types of devices, α = 3, that is, they satisfy the cube-root
rule. When α = 3, we show that qOA is 6.7-competitive, improving upon
the previous best guarantee of 27 achieved by the algorithm Optimal
Available (OA). So when the cube-root rule holds, our results reduce the
range for the optimal competitive ratio from [1.2, 27] to [2.4, 6.7]. We also
analyze qOA for general α and give almost matching upper and lower
bounds.

1 Introduction

Current processors produced by Intel and AMD allow the speed of the processor
to be changed dynamically. Intel’s SpeedStep and AMD’s PowerNOW technolo-
gies allow the Windows XP operating system to dynamically change the speed
of such a processor to conserve energy. In this setting, the operating system must
not only have a job selection policy to determine which job to run, but also a speed
scaling policy to determine the speed at which the job will be run. All theoretical
studies we know of assume a speed to power function P (s) = sα, where s is the
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speed and α > 1 is some constant. Energy consumption is power integrated over
time. The operating system is faced with a dual objective optimization problem
as it both wants to conserve energy, and optimize some Quality of Service (QoS)
measure of the resulting schedule.

The first theoretical study of speed scaling algorithms was in the seminal
paper [16] by Yao, Demers, and Shenker. In the problem introduced in [16]
the QoS objective was deadline feasibility, and the objective was to minimize
the energy used. To date, this is the most investigated speed scaling problem
in the literature [16, 2, 9, 6, 5, 14, 17, 12, 1, 11]. In this problem, each job i has a
release time ri when it arrives in the system, a work requirement wi, and a
deadline di by which the job must be finished. The deadlines might come from
the application, or might arise from the system imposing a worst-case quality-
of-service metric, such as maximum response time or maximum slow-down. It is
clear that an optimal job selection policy is Earliest Deadline First (EDF). Thus
the remaining issue is to find an online speed scaling policy to minimize energy.

1.1 The Story to Date

Yao, Demers and Shenker showed that the optimal offline schedule can be effi-
ciently computed by a greedy algorithm [16]. [16] proposed two natural online
speed scaling algorithms, Average Rate (AVR) and Optimal Available (OA).
Conceptually, AVR is oblivious in that it runs each job in the way that would
be optimal if there were no other jobs in the system. That is, AVR runs each
job i (in parallel with other jobs) at the constant speed wi/(di − ri) through-
out interval [ri, di]. The algorithm OA maintains the invariant that the speed
at each time is optimal given the current state, and under the assumption
that no more jobs will arrive in the future. In particular, let w(x) denote the
amount of unfinished work that has deadline within x time units from the cur-
rent time. Then the current speed of OA is maxx w(x)/x. Another online al-
gorithm BKP is proposed in [5]. BKP runs at speed e · v(t) at time t, where
v(t) = maxt′>t w(t, et − (e − 1)t′, t′)/(e(t′ − t)) and w(t, t1, t2) is the amount of
work that has release time at least t1, deadline at most t2, and that has already
arrived by time t. Clearly, if w(t1, t2) is the total work of jobs that are released
after t1 and have deadline before t2, then any algorithm must have an average
speed of at least w(t1, t2)/(t2 − t1) during [t1, t2]. Thus BKP can be viewed as
computing a lower bound on the average speed in an online manner and running
at e times that speed.

Table 1 summarizes the previous results. The competitive ratio of AVR is
at most 2α−1αα. This was first shown in [16], and a simpler amortized local
competitiveness analysis was given in [2]. The competitive ratio of AVR is least
(2 − δ)α−1αα, where δ is a function of α that approaches zero as α approaches
infinity [2]. The competitive ratio of OA is exactly αα [5], where the upper
bound is proved using an amortized local competitiveness argument. Thus the
competitive ratio of AVR is strictly inferior to that of OA. The competitive ratio
of BKP is at most 2(α/(α − 1))αeα [5], which is about 2eα+1 for large α . It is
better than that of OA only for α ≥ 5. On the other hand, the lower bounds for



Previous Results
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower

General
`

4

3

´α
/2 1.1 1.2

AVR 2α−1αα (2 − δ)α−1αα 8 4 108 48.2

OA αα αα 4 4 27 27

BKP 2(α/(α − 1))αeα 59.1 135.6

Our Contributions
Algorithm General α α = 2 α = 3

Upper Lower Upper Lower Upper Lower

General eα−1/α 1.3 2.4

qOA 4α/(2
√

eα) 1

4α
4α(1 − 2

α
)α/2 2.4 6.7

Table 1. Results on the competitive ratio for energy minimization with deadline fea-
sibility.

general algorithms are rather weak. Somewhat surprisingly, the best known lower
bound instance is the worst-possible instance consisting of two jobs. [4] shows a
lower bound of

(

4
3

)α
/2 on the competitive ratio using a two job instance. If one

tries to find the worst 3, 4, . . . job instances, the calculations get messy quickly.
The most interesting value of α seems to be three. Most importantly, in

current CMOS based processors, the speed satisfies the well-known cube-root-
rule, that the speed is approximately the cube root of the power [8]. The power
is also roughly proportional to the cube of the speed in many common de-
vices/machines, such as vehicles/automobiles, and some types of motors. It seems
likely that α would be in the range [2, 3] for most conceivable devices. The best
known guarantee for α in this range is αα achieved by OA, which evaluates to
4 for α = 2 and 27 for α = 3. Our motivating goal is to focus on the case that
α = 3, and to a lesser extent on α = 2, and to obtain better algorithms and
lower bounds in these cases.

1.2 Our Contributions

We show, using an amortized local competitiveness analysis, that if q is set to
2 − 1

α , then the competitive ratio of qOA is at most 4α/(2
√

eα). This bound
is approximately 3.4 when α = 2, and 11.2 when α = 3. Using an analysis
specialized to the specific cases that α = 2 and α = 3, we show that qOA is at
worst 2.4-competitive when α = 2, and at worst 6.7-competitive when α = 3.

Our main technical idea is to introduce a new potential function which is
quite different from the one used in the analysis of OA in [5] (and the potential
function used to analyze AVR in [2]). This is necessary, since potential functions
similar to those used earlier cannot yield guarantees of the form cα where c
is independent of α. The potential function we use is more similar to the one



used in [7] to analyze a speed scaling algorithm for the (different) objective
of minimizing flow time plus energy. However, here we will need a different
analysis approach. The analysis in [7], and almost all of the amortized local
competitiveness analyses in the speed scaling literature, rely critically on the
Young’s inequality. However, in the current setting, Young’s inequality gives a
bound that is too weak to be useful when analyzing qOA. The key insight that
allows us to avoid the use of Young’s inequality was to observe that certain
expressions that arise in the analysis are convex, which allows us to reduce the
analysis of the general case down to just two extreme cases. To the best of
our knowledge, this convexity technique can replace all of the uses of Young’s
inequality in the speed scaling literature. In all cases, the resulting bound that
one obtains using this convexity technique is at least as good as the bound that
one obtains using Young’s inequality, and the resulting proof is simpler and
more intuitive. In some cases, this convexity technique gives a better bound.
For example, if one applies this convexity technique to the analysis of the LAPS
algorithm in [10], one obtains a bound on the competitive ratio of O(α2/ log2 α),
whereas using Young’s technique one can only get a bound of O(α3).

In Section 4 we consider lower bounds. We give the first non-trivial lower
bound on the competitive ratio for any algorithm. We show that every deter-
ministic algorithm must have a competitive ratio of at least eα−1/α. The base of
the exponent, e, is the best possible since BKP achieves a ratio of about 2eα+1.
For α = 3, this raises the best known lower bound a modest amount, from 1.2 to
2.4. The instance is identical to the one used in [5] to lower bound the competi-
tive ratio with respect to the objective of minimizing the maximum speed. The
innovation required to get a lower bound for energy is to categorize the variety
of possible speed scaling policies in such a way that one can effectively reason
about them.

Given the general lower bound of eα−1/α, and that BKP achieves a ratio
with base of exponent e, a natural question is whether there is some choice of
the parameter q for which the competitive ratio of qOA varies with e as the base
of the exponent. Somewhat surprisingly, we show that this is not the case and
the base of the exponent cannot be improved beyond 4. In particular, we show
that the competitive ratio of qOA is at least 1

4α4α(1− 2
α )α/2. We note that this

lower bound is quite close to our upper bound for qOA, especially as α increases.
Our results are summarized in the last two rows of table 1. In particular we

give asymptotically matching upper and lower bounds for qOA and reduce the
range for the optimal competitive ratio in the case that the cube-root rule holds
from [1.2, 27] to [2.4, 6.7] and in the case that α = 2 from [1.1, 4] (obtained in
[16]) to [1.3, 2.4]. Due to the limitation of space, some proofs are omitted and
will be given in the full paper.

1.3 Other Related Results

There are now enough speed scaling papers in the literature that it is not prac-
tical to survey all such papers here. We limit ourselves to those papers most
related to the results presented here.



A naive implementation of YDS runs in time O(n3). This can be improved
to O(n2) if the intervals have a tree structure [12]. Li, Yao and Yao [13] gave
an implementation that runs in O(n2 log n) time for the general case. For hard
real-time jobs with fixed priorities, Yun and Kim [17] showed that it is NP-hard
to compute a minimum-energy schedule. They also gave a fully polynomial time
approximation scheme for the problem. Kwon and Kim [11] gave a polynomial
time algorithm for the case of a processor with discrete speeds. Li and Yao [14]
gave an algorithm with running time O(d · n log n) where d is the number of
speeds. A simpler algorithm with this running time can be found in [13].

Albers, Müller, and Schmelzer [1] consider the problem of finding energy-
efficient deadline-feasible schedules on multiprocessors. [1] showed that the of-
fline problem is NP-hard, and gave O(1)-approximation algorithms. [1] also gave
online algorithms that are O(1)-competitive when job deadlines occur in the
same order as their release times. Chan et al. [9] considered the more general
and realistic speed scaling setting where there is an upper bound on the maxi-
mum processor speed. They gave an O(1)-competitive algorithm based on OA.
Recently, Bansal, Chan and Pruhs [3] investigated speed scaling for deadline
feasibility in devices with a regenerative energy source such as a solar cell.

2 Formal Problem Statement

A problem instance consists of n jobs. Job i has a release time ri, a deadline
di > ri, and work wi > 0. In the online version of the problem, the scheduler
learns about a job only at its release time; at this time, the scheduler also learns
the exact work requirement and the deadline of the job. We assume that time
is continuous. A schedule specifies for each time a job to be run and a speed
at which to run the job. The speed is the amount of work performed on the
job per unit time. A job with work w run at a constant speed s thus takes w

s
time to complete. More generally, the work done on a job during a time period
is the integral over that time period of the speed at which the job is run. A
schedule is feasible if for each job i, work at least wi is done on job i during
[ri, di]. Note that the times at which work is performed on job i do not have to
be contiguous. If the processor is run at speed s, then the power is P (s) = sα

for some constant α > 1. The energy used during a time period is the integral of
the power over that time period. Our objective is to minimize the total energy
used by the schedule. An algorithm A is said to be c-competitive if for any job
sequence, the energy usage of A is at most c times that of the optimal schedule.

3 Upper Bound Analysis of qOA

Our goal in this section is to show that qOA is about 4α/(2
√

eα)-competitive
when q = 2 − (1/α). We wish to point out that q = 2 − 1/α is not necessarily
the optimum value of q. For general α it is not clear how to obtain the optimum
choice of q since it involves solving a system of high degree algebraic inequalities.
However, the lower bound for qOA will imply that the choice q = 2−1/α is close



to optimum. For the case of α = 3 and that of α = 2, we can explicitly determine
the optimum choice of q which gives better competitive ratios for these cases.

We use an amortized local competitiveness analysis, and use a potential func-
tion Φ(t) that is a function of time. In this setting, the value of Φ(t) will be energy,
and thus, the derivative of Φ(t) with respect to time will be power. We need that
Φ is initially and finally zero. Let sa and so be the current speed of the online
algorithm (qOA in our case) and the optimal algorithm OPT respectively. Then
in order to establish that the online algorithm is c-competitive, it is sufficient to
show that the following key equation holds at all times:

sα
a +

dΦ

dt
≤ c · sα

o (1)

The fact that equation (1) establishes c-competitiveness follows by integrating
this equation over time, and from the fact that Φ is initially and finally 0. For
more information on amortized local competitiveness arguments see [15].

Before defining the potential function Φ that we use, we need to introduce
some notation. We always denote the current time as t0. For any t0 ≤ t′ ≤ t′′, let
wa(t′, t′′) denote the total amount of work remaining in qOA at t0 with deadline
in (t′, t′′]. Define wo(t

′, t′′) similarly for OPT. Recall that qOA runs at speed
q · maxt wa(t0, t)/(t − t0), which is q times the speed that OA would run. Let
d(t′, t′′) = max{0, wa(t′, t′′) − wo(t

′, t′′)}, denote the amount of additional work
left under the online algorithm that has deadline in (t′, t′′]. We define a sequence
of time points t1 < t2 < . . . iteratively as follows: Let t1 be the time such
that d(t0, t1)/(t1 − t0) is maximized. If there are several such points, we choose
the furthest one. Given ti, let ti+1 > ti be the furthest point that maximizes
d(ti, ti+1)/(ti+1 − ti). We use gi to denote d(ti, ti+1)/(ti+1 − ti). Note that gi is
a non-negative monotonically decreasing sequence.

We first bound the offline and online speed, which will be useful in our
analysis:

Lemma 1. (i) so ≥ maxt wo(t0, t)/(t− t0). (ii) sa ≥ qg0 and sa ≤ qg0 +qso.

We are now ready to define the potential function Φ that we use in our
analysis of qOA:

Φ = β

∞
∑

i=0

((ti+1 − ti) · gα
i ) ,

where β is some constant (which will be set to qα(1 + α−1/(α−1))α−1).
We now make some observations about the potential function Φ. Φ is obvi-

ously zero before any jobs are released, and after the last deadline. Job arrivals
do not affect Φ since d(t′, t′′) does not change upon a job arrival for any t′ and
t′′. Similarly, job completions by either qOA or optimal do not change Φ since it
is a continuous function of the unfinished work, and the unfinished work on a job
continuously decreases to 0 as it completes. Finally, structural changes in the ti
and gi do not change the value of Φ. In particular, if g0 decreases (for instance
if online is working faster than offline on jobs with deadline in [t0, t1]), then at



some point g0 becomes equal to g1, and the intervals [t0, t1] and [t1, t2] merge
together. Upon this merge, the potential does not change as g0 = g1 at this
point. Similarly, if offline works too fast, the interval [tk, tk+1] (which contains
the earliest deadline among the unfinished jobs under offline) might split into
two critical intervals, [tk, t′] and [t′, tk+1], but again this change does not affect
Φ since at the time of splitting, the value of g for the newly formed intervals is
identical to the value of the interval [tk, tk+1]

Thus to complete our analysis, we are left to show the following lemma:

Lemma 2. For general α > 1, set q = 2 − (1/α), β = c = (2 − (1/α))α(1 +
α−1/(α−1))α−1. Consider a time t where no jobs are released, no jobs are com-
pleted by qOA or optimal, and there are no structural changes to the ti’s nor
gi’s. Then equation (1), sα

a + dΦ/dt − c · sα
o ≤ 0, holds at time t.

Proof. Suppose first that wa(t0, t1) < wo(t0, t1). In this case, d(t0, t1) = 0, g0 = 0
and t1 is basically infinity. Note that dΦ/dt = 0 since Φ remains zero until
wa(t0, t1) ≥ wo(t0, t1). Therefore, sα

a + dΦ/dt − c · sα
o ≤ 0 because sa ≤ qso and

c = qα(1 + α−1/(α−1))α−1 > qα.
Hence we assume wa(t0, t1) ≥ wo(t0, t1) in the following. Without loss of

generality, both OPT and qOA schedule jobs according to Earliest Deadline
First, and hence qOA is working on a job with deadline at most t1. Let t′ be
deadline of the job that OPT is working on, and let k be such that tk < t′ ≤ tk+1.

First consider the case that k > 0. When both qOA and OPT work, g0

decreases, the quantities g1, . . . , gk−1, and gk+1, . . . stay unchanged, and gk in-
creases. Note that (t1 − t0) is decreasing, and the rate of decrease is the same as
the rate that time passes. Therefore, the rate of change of (t1 − t0) · gα

0 is

d

dt0
((t1 − t0) · gα

0 ) = (t1 − t0) · αgα−1
0

(

(t1 − t0)(−sa) + d(t0, t1)

(t1 − t0)2

)

− gα
0

= αgα−1
0 (−sa) + (α − 1)gα

0

For the rate of change of (tk+1− tk) ·gα
k , we note that tk+1− tk stays unchanged.

Also, the rate of change of d(tk, tk+1) may be −so or 0, depending on whether
wa(tk, tk+1) is greater than wo(kk, tk+1). Therefore,

d

dt0
((tk+1 − tk) · gα

k ) ≤ (tk+1 − tk) · αgα−1
k

(

(tk+1 − tk)(so)

(tk+1 − tk)2

)

= αgα−1
k (so) ≤ αgα−1

0 (so)

Thus to show sα
a + dΦ/dt − c · sα

o ≤ 0, it suffices to show that

sα
a + β(αgα−1

0 (−sa + so) + (α − 1)gα
0 ) − c · sα

o ≤ 0. (2)

Now consider the case that k = 0. Note that for i ≥ 1, neither gi nor ti+1− ti
changes, so we need not consider these terms in the potential function. The rate



of change of (t1 − t0) · gα
o is

d

dt0
((t1 − t0) · gα

0 ) = (t1 − t0) · αgα−1
0 ·

(

(t1 − t0)(−sa + so) + d(t0, t1)

(t1 − t0)2

)

− gα
0

= αgα−1
0 (−sa + so) + (α − 1)gα

0

which leads to the same inequality as equation (2).
Hence, we will focus on equation (2), and show that it is true for the stated

values of q, c and β. We consider the left hand side of equation (2) as a function
of sa while g and so are fixed. Note that it is a convex function of sa. Since
sa ∈ [qg0, qg0 + qso], it suffices to show that equation (2) holds at the endpoints
sa = qg0 and sa = qg0 + qso.

If sa = qg0, the left hand side of equation (2) becomes

qαgα
0 − βqαgα

0 + βαgα−1
0 so + β(α − 1)gα

0 − csα
o =

(qα − βαq + β(α − 1))gα
0 + βαgα−1

0 so − csα
o

Taking derivative with respect to so, we get that this is maximized at so satisfying

csα−1
o = βgα−1

0 , and hence so =
(

β
c

)1/(α−1)

g0. Substituting this for so and

canceling gα
0 , it follows that we need to satisfy the following equation:

(qα − βαq + β(α − 1)) + β(α − 1)

(

β

c

)1/(α−1)

≤ 0. (3)

If sa = qg0 + qso, the left hand side of equation (2) becomes

qα(g0 + so)
α − βqα(g0 + so)g

α−1
0 + βαgα−1

0 so + β(α − 1)gα
0 − csα

o

= qα(g0 + so)
α − β(qα − (α − 1))gα

0 − βα(q − 1)gα−1
0 so − csα

o

Setting so = x · g0 and canceling gα
0 , it follows that we need to satisfy

qα(1 + x)α − β(qα − (α − 1)) − βα(q − 1)x − cxα ≤ 0. (4)

We set q = 2 − (1/α) and β = c = qαηα−1 where η = 1 + α−1/(α−1). With
these choices of q, β and c, αq = 2α − 1, and to establish equation (3) it is
sufficient to show that qα − β ≤ 0, which is trivially true since η > 1. Similarly,
equation (4) is equivalent to (1 + x)α −αηα−1 − ηα−1(α− 1)x− ηα−1xα ≤ 0 for
all x ≥ 0. Since α ≥ 1, it suffices to show that

(1 + x)α − αηα−1 − ηα−1xα ≤ 0. (5)

To see this, note that if we take the derivative of the left side of equation (5), we
obtain that the maximum is attained at x such that (1 + x)α−1 − ηα−1xα−1 = 0
and hence x = 1/(η−1). For this value of x, the left side of equation (5) evaluates
to 0 and hence the result follows. Hence equation (2) is satisfied and the lemma
follows. ⊓⊔



Now our main theorem follows as a direct consequence.

Theorem 1. qOA is (2− 1
α )α(1+α−1/(α−1))α−1-competitive for general α > 1.

Note that for large values of α, this bound on the competitive ratio of qOA
is approximately 4α/(2

√
eα). For α = 3 this bound on the competitive ratio of

qOA evaluates to (5/3)3(1 + 1/
√

3)2 ≈ 11.52 (which is already better than the
best known bound of 27). However, for the cases of α = 2 and α = 3, we can
determine the optimum values of q and β to obtain Theorems 2 and 3.

Theorem 2. If q = 1.54, then qOA is 6.73-competitive for α = 3.

Proof. We follow the same proof structure as that for Lemma 2 to obtain the
inequalities (3) and (4). By putting α = 3, it follows that we need to satisfy:

(q3 − 3βq + 2β) + 2β

(

β

c

)1/2

≤ 0

q3(1 + x)3 − β(3q − 2) − 3β(q − 1)x − cx3 ≤ 0

We wrote a program to determine the values of q and β that minimize c. The
best values we obtained are q = 1.54, β = 7.78 and c = 6.73. It is easy to check
that the first inequality is satisfied. The left hand side of the second inequality
becomes −3.08x3 + 10.96x2 − 1.65x− 16.73, which can be shown to be negative
by differentiation. Hence (3) and (4) are satisfied and the theorem follows. ⊓⊔
Theorem 3. If q = 1.46 and β = 2.7, then qOA is 2.391-competitive for α = 2.

4 Lower Bounds

In this section, we show that any algorithm is at least 1
αeα−1-competitive. Note

that we assume α is fixed and is known to the algorithm. We first give an
adversarial strategy for constructing a job instance such that any algorithm uses
at least 1

αeα−1 times the energy of the optimal.

Adversarial Strategy: Let ǫ > 0 be some small fixed constant. Work is arriving
during [0, ℓ], where 0 < ℓ ≤ 1 − ǫ. The rate of work arriving at time t ∈ [0, ℓ] is

a(t) =
1

1 − t

So the work that arrives during any time interval [u, v] is
∫ v

u
a(t)dt. All work

has deadline 1. Let A be any online algorithm. The value of ℓ will be set by the
adversary according to the action of A. Intuitively, if A spends too much energy
initially, then ℓ will be set to be small. If A doesn’t spend enough energy early
on, then ℓ will be set to 1− ǫ. In this case, A will have a lot of work left toward
the end and will have to spend too much energy finishing this work off. To make
this more formal, consider the function

E(t) =

∫ t

0

(

(1 +
b

ln ǫ
)

1

1 − x

)α

dx ,



where b is a constant (set to 1
(α−1)1/α later). This is the total energy usage up

to time t if A runs at speed s(t) = (1 + b
ln ǫ )

1
1−t . Of course, A may run at speed

other than s(t). If there is a first time 0 < h ≤ 1− ǫ such that total energy usage
of A up to h is at least E(h), then the value of ℓ is set to h. If no such event
occurs, then ℓ = 1 − ǫ. �

In Lemma 5 we show that if the adversary ends the arrival of work at some
time 0 < h ≤ 1 − ǫ because the total energy usage of A is at least E(h), then
A must have used at least 1

αeα−1 times as much energy as optimal. Similarly, in
Lemma 7, we show that if the adversary doesn’t end the arrival of work until the
time 1−ǫ, then the online algorithm uses at least 1

αeα−1 times as much energy as
optimal. Then our main result, that any algorithm is at least 1

αeα−1-competitive,
follows immediately. We start with two technical lemmas.

Lemma 3. For any 0 < h ≤ 1− 1
e , (− ln(1−h))α ≤ α

eα−1 ( 1
(α−1)(1−h)α−1 − 1

α−1 ).

Lemma 4. Let s1(t) and s2(t) be non-negative functions, and let α > 1 and
x > 0 be some real numbers. If s2(t) is continuous and monotonically increasing
and if

∫ y

0
(s1(t)

α − s2(t)
α)dt < 0 for all 0 < y ≤ x, then

∫ x

0
(s1(t)− s2(t))dt < 0.

Lemma 5. If there is a time 0 < h ≤ 1 − ǫ such that the total energy usage of
A is at least E(h), then A is at least 1

αeα−1-competitive.

Proof. Let EA be the total energy usage of A. Then,

EA ≥ E(h) =

∫ h

0

(

(1 +
b

ln ǫ
)

1

1 − x

)α

dx = (1+
b

ln ǫ
)α(

1

(α − 1)(1 − h)α−1
− 1

α − 1
)

Let Eopt be the energy usage of the optimal algorithm. There are two cases for
the value of Eopt: (i) 0 < h ≤ 1 − 1

e and (ii) 1 − 1
e < h ≤ 1 − ǫ .

(i) If 0 < h ≤ 1 − 1
e , the total amount of work released is

∫ h

0
1

1−xdx =
− ln(1 − h) ≤ 1. Thus, the optimal algorithm can run at speed − ln(1 − h)
throughout [0, 1] to completes all work. Then

Eopt =
(

− ln(1 − h)
)α ≤ α

eα−1
(

1

(α − 1)(1 − h)α−1
− 1

α − 1
)

where the inequality comes from Lemma 3. The competitive ratio is EA/Eopt ≥
(1 + b

ln ǫ )
α 1

αeα−1, which is again at least 1
αeα−1 when ǫ tends to 0.

(ii) If 1 − 1
e < h ≤ 1 − ǫ, the optimal algorithm runs at speed a(t) for

t ∈ [0, 1− e(1− h)] and run at speed 1
e(1−h) for t ∈ [1− e(1− h), 1]. It is easy to

check that this schedule completes all work. Then,

Eopt =

∫ 1−e(1−h)

0

(
1

1 − x
)αdx + (

1

e(1 − h)
)α · e(1 − h) (6)

=
α

eα−1

1

(α − 1)(1 − h)α−1
− 1

α − 1
(7)

The competitive ratio is EA

Eopt
≥ (1 + b

ln ǫ )
α 1

αeα−1, which is at least 1
αeα−1 when

ǫ tends to 0. ⊓⊔



We now turn attention to the case that the energy usage of A is less than
E(t) for all 0 < t ≤ 1 − ǫ. We first show in Lemma 6 that A cannot complete
too much work by time 1 − ǫ.

Lemma 6. Assume at any time 0 < t ≤ 1− ǫ, the energy usage of A up to time
t is less than E(t). Then, the amount of work done by A up to time 1− ǫ is less

than
∫ 1−ǫ

0
(1 + b

ln ǫ )
1

1−xdx.

Proof. Let s1(y) be the speed of the algorithm A and consider the algorithm B
that works at speed s2(t) = (1 + b

ln ǫ )
1

1−t . The energy consumed by B by time

t is exactly
∫ t

0
s2(y)αdy = E(t). The result now follows by applying Lemma 4

with x = 1 − ǫ and observing that s2(t) is monotonically increasing. ⊓⊔

We are now ready to show, in Lemma 7, that if the adversary doesn’t end
the arrival of work until time 1− ǫ then the online algorithm uses at least 1

αeα−1

times as much energy as optimal.

Lemma 7. If at any time 0 < t ≤ 1− ǫ, the total energy usage of A is less than
E(t), then A is at least 1

αeα−1-competitive.

Proof. Note that the adversary ends the arrival of work at time 1 − ǫ and the

total amount of work arrived is
∫ 1−ǫ

0
1

1−xdx = − ln ǫ. By Lemma 6, the maximum
amount of work completed by A up to time 1 − ǫ is

∫ 1−ǫ

0

(1 +
b

ln ǫ
)

1

1 − x
dx = (1 +

b

ln ǫ
)[− ln(1 − x)]1−ǫ

0 = − ln ǫ − b

Hence, A has at least b units of work remaining at time 1−ǫ. To finish it, the total
energy usage of A is at least bα

ǫα−1 , which equals 1
(α−1)ǫα−1 by setting b = 1

(α−1)1/α .

Using equation 7 we find that the energy usage of the optimal algorithm is at
most α

eα−1

1
(α−1)ǫα−1 . Thus, the competitive ratio is at least 1

αeα−1. ⊓⊔

Theorem 4. Any algorithm is at least 1
αeα−1-competitive.

Lower bound for qOA. Finally, we give a job instance to show that qOA is at
least 1

4α4α(1 − 2
α )α/2 competitive. The analysis is left to the full paper.

Job Instance: Let 1 > ǫ > 0 be some small fixed constant. Consider the input
job sequence where work is arriving during [0, 1 − ǫ] and the rate of arrival at
time t is

a(t) =
1

(1 − t)x
,

where x > 1
α is a constant (which will be set to 2

α later). All work has deadline
1. Finally, a job is released at time 1 − ǫ with work ǫ1−x and deadline 1. �

Theorem 5. Let α be a known constant. For any choice of q, qOA is at least
1
4α4α(1 − 2

α )α/2 competitive.
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