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Objective: Minimize ET“

e Main thesis of this paper: ET® is a measure of the goodness
of an algorithm.

e Suppose that for some input, an algorithm requires E units of
energy and T units of time.

o If power as a function of speed is P(s) = s°, then running the
algorithm c times faster increases energy by a factor of ¢ /c
(E = Pt).

e In other words, T decreases by a factor of 1/c®, while E
increases by a factor of ¢, where « = 8 — 1. Thus ET®
remains constant under speed scaling, but depends on the
algorithm and input size.



Knowing ET® is useful whether the objective is time, energy, or
power.




Machine Model

A machine is modeled as a network of processing elements
(PEs) on a plane.

A PE has O(1) input bits, O(1) output bits, and stores O(1)
bits of state. It can set its outputs to an arbitrary function of
its inputs and state using e units of energy and t units of
time, where et® = 1.

The input to an algorithm is initially stored at designated
input PEs and the output of the algorithm must be stored at
designated output PEs when computation terminates.

Sometimes all the input PEs are required to lie along a line,

and all the output PEs are required to lie along a possibly
different line (perimeter 1/0).



Lower-Bound Model

e Lower bounds on ET® can be proven by examining the
minimum communication cost that must be incurred by any
algorithm for a problem.

e A PE can have at most d? other PEs within distance d of
itself, since the PEs lie on a plane.

e The time t and energy e required to send a bit between two
PEs distance d apart must satisfy et® = d*t1.

e Justification: A wire of length d can be thought of as a chain
of d PEs. Since each PE can copy its input bit to its output
bit using 1 unit of time and 1 unit of energy, sending a bit
through d PEs requires d units of time and d units of energy,
giving et® = d - d* = d**1. Scaling the transmission speed t
does not alter et® because of the corresponding increase in
energy e.



Upper-Bound Model

e An upper bound on ET“ for a problem can be demonstrated
by giving a concrete layout of PEs on a plane and an
algorithm for how the PEs are used.

e To ensure that the design can be implemented, PEs are
required to occupy a unit square and can only communicate
with the four PEs directly adjacent to it.

e Wires are just chains of PEs that copy their inputs to their
outputs.



Binary Addition: Lower Bound

e We prove a lower bound on ET® for binary addition of two
n-bit input words from the fact that a carry generated by the
least significant bit can affect all the bits of the sum
(00000001 + 01111111 = 10000000).

e Thus one bit of information must be propagated from the
input PE with the least significant bit to all of the output PEs.

e With the perimeter |/O constraint, the n+ 1 output PEs lie
along a line, so one bit of information must travel over a
distance of at least n/2. Since the communication cost alone
is at least et® = d**1 = (n/2)**1, the total cost of any
perimeter 1/O binary addition algorithm must be Q(n®*1).

e Without the perimeter |/O constraint, one bit of information
must travel over a distance of at least 1/n, since it must reach
n+ 1 output PEs. The ET® complexity of any binary addition
algorithm is therefore Q((1/n)**1) = Q(nlo+1)/2),



Binary Addition: Perimeter /O Upper Bound

A ripple carry adder can be constructed from a chain of n
1-bit adders.

The ith adder is given bit i of each operand as input, as well
as the carry in ¢; from the previous adder (co = 0).

It produces bit / of the sum as output—s; = a; ® b; d c;—and
computes the carry out as ¢iy1 = (a; - b;) + (ai + bi) - ¢;.

The 1-bit adders operate sequentially, and each adder only
needs to perform computation during one time step, so the
addition requires time O(n) and energy O(n), giving

ET® = O(n**1). This matches the lower bound of Q(n®*1).



Binary Addition: Planar |/O Upper Bound

A carry-lookahead adder can be implemented as a binary tree.

The ith leaf node receives bit i of each operand as input and
computes bit / of the sum as output: s; = a; ® b; P ;.

The carry in ¢; comes from the parent of the leaf node. In
order for this to be computed, each leaf node first provides its
parent with a carry-generate bit g; = a; - b; and a
carry-propagate bit p; = a; ® b;.

Each internal node receives gy and p; from its left child and g,
and p, from its right child. It calculates the carry-generate bit
for the entire subtree as g+ = g + (g - pr) and a
carry-propagate bit for the entire subtree as p; = p; - pr, and
sends these values to its parent.



e The root node provides 0 as the carry in for its left child, g; as
the carry in for its right child, and sets bit n+ 1 of the sum to
gr + (g1 - pr). Every other internal node copies the carry in
from its parent to the carry in for its left child, and sets the
carry in for its right child to g/ + (cparent - P1)-



e The binary tree carry-lookahead adder can be laid out on the
plane as an H-tree.

e Setting the time for PEs at level k and the PEs in the chain
from level k to level k + 1 to 2¥/(e+1) yields E = O(+/n),
T = O(y/n), and ET® = O((y/n)*t1) = Q(n(@+1)/2) for
« > 1, matching the lower bound for ET®.




Sorting: Lower Bound

e Sorting corresponds to matching each input position with the
correct output position.

e To derive a lower bound on the communication cost, consider
the input PEs one by one and permute the input values in
such a way that each input PE must send its input to the
unmatched output PE that is farthest from it.

e The ith input PE can be matched with n — /i 4+ 1 output PEs.
For perimeter 1/O (all the output PEs lie along a line), this
means that the distance from input PE i to the farthest
unmatched output PE is at least (n — i)/2. For planar 1/0,
the distance to the farthest unmatched output PE is at least

Vn—i.



Suppose that the entire sort is completed in T time units.

For perimeter 1/0, the energy e; used to send the jth input
value to the correct output PE in time t; must satisfy

et® =d*t > ((n—1i)/2)*L. Since t; < T,

e > ((n—1i)/2)*t1 T2

The total energy must be at least

n

E= Ze, > Z —i)/2)ettT—o = p-(e+l) o Z(n—i)a“.

i=1

Thus ET® = Q(n**2).
For the planar 1/0 case, e; > (v/n — i)®T1 T~ Thus

E— Z e > T Z (Oerl

and ET® = Q(n(®+3)/2),



Sorting: Perimeter 1/O Upper Bound

Figure: Sorting network for bubble sort.
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In the implementation of bubble sort shown below, allocating unit
time to all PEs results in T = O(n) and E = O(n?). Thus
ET® = O(n**2), matching the lower bound for perimeter 1/0.
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Summary

ET® as a measure of algorithm quality

Lower-bound versus upper-bound models

Perimeter /O versus planar /0

Matching lower and upper bounds for addition, multiplication,
and sorting



Questions/Comments



