
“Group Strategyproof Mechanisms via
Primal-Dual Algorithms”

Martin Pál and Éva Tardos (2003)

Key Points to Discuss

• The Cost-Sharing Problem

– Metric Facility Location

– Single Source Rent-or-Buy

• Definition of key properties

• Developing group strategyproof mechanisms
for both problems using similar primal-dual
algorithms.

• Approximation factors for both algorithms.

1

The Cost-Sharing Problem

Inputs: A set U of potential users. Each user

has a private utility ui of being serviced by a

facility (or connected to a network).

Idea: We want to install or maintain a facility

or network such that the users of the facil-

ity (network) share the cost of its installation

(maintenance).

Outputs: A set J ⊆ U of users that will be

users of the facility (or part of the network).

We also want the cost of installation or mainte-

nance to be shared among the users so that ev-

eryone is “content” with the decision (known

as cost shares).

2

Meaning of “content”

(Properties of group strategyproofness)

A user should not have incentives to change his

mind about contributing (or not contributing)

to a facility or about being in (or not being in)

the network later.

A user should not have incentives to lie about

his utility.

A group of users should not be tempted to

buy a separate facility or to build a separate

network of cost smaller than the sum of their

current contributions.

3

Key Properties of Cost Shares

Cross-monotonicity: The cost share of each
user never goes up as the set of participating
users increases.

Moulin and Shenker (2001) show that cross-
monotonic cost sharing leads to group strate-
gyproof mechanisms for determining the set of
users (J).

Competitiveness: The sum of the cost shares
cannot be more than the true cost.

Cost Recovery: The sum of the cost shares
must pay for the true cost.

α-Approximate Cost Recovery: Users are only
required to recover (pay for) 1/α fraction of
the true cost.

4

Developing a Group-Strategyproof

Mechanism for the Cost Sharing Problem

We need to:

1. Determine the set J of participating users.

2. Determine cost shares with the properties:

• Cross-Monotonicity,

• Competitiveness, and

• α-Approximate Cost Recovery.

Focus on two problems: Metric Facility Location

(easy) and Single-Source Rent or Buy (more

difficult).

5

Metric Facility Location

(Review from class)

Inputs: A set of potential facilities F and a set

J ⊆ U of users.

Idea: Open a subset of the facilities, paying

amount fp for each open facility p, and build a

link from each user j ∈ J to some open facility,

given the cost of connecting user j to facility

p defined as cjp.

Outputs: Which facilities to open. Which users

are connected to which facilities.

6

Facility Location Primal and Dual
Formulations

Primal

min
∑
p

fpyp +
∑

j

∑
p

cjpxjp

s.t.
∑
p

xjp ≥ 1 ∀j

yp − xjp ≥ 0 ∀j,∀p

xjp ∈ {0,1}, yj ∈ {0,1}

Dual

max
∑

j

αj

s.t. αj − βjp ≤ cjp ∀j,∀p
∑

j

βjp ≤ fp ∀p

αj ≥ 0, βjp ≥ 0

7

Primal-Dual Algorithm for FL

Key Concepts

Grow a ball (“ghost”) around each user until
either (1) the ghost touches a full facility, or
(2) a facility that the ghost is already touching
becomes full.

When facility p becomes full we open it iff
there is no already open facility q such that
c(p, q) ≤ 2t(p) where t(p) is the time when
p becomes full. This is slightly different
than the method we discussed in class, but
achieves the same approximation.

The cost of the solution constructed is at most
3 times the sum of the cost shares. Thus the
sum of the costs that a group of users pays to
open a facility (cost shares) is at least 1/3 of
the cost of opening the facilities plus connec-
tion costs.

8

Primal-Dual Algorithm for FL

Key Concepts, con’t

Cross-Monotonicity: The cost share of each
user never goes up as the set of participating
users increases. By adding more users, each
facility can only get filled more quickly, and
hence each individual user can only become
satisfied earlier.

Competitiveness: The method cannot charge
users more than the true cost. The algorithm
provides a lower bound to optimum.

α-Approximate Cost Recovery: As stated pre-
viously, this algorithm recovers 1/3 of the cost
of the solution constructed.

MAIN RESULT: This primal-dual algorithm
is a 3-approximate cross-monotonic, cost-
sharing (i.e. group strategyproof) method
for metric facility location.

9

Single-Source Rent or Buy

Inputs: A set of J ⊆ U of users and a source

s, residing in a graph G = (V, E). A parameter

M .

Idea: Build a tree such that there exists a path

between each user and the source using edges

in E. Each edge can either be bought at a cost

Mce or rented at a cost of ce. Bought edges

can support any number of paths. The rental

cost ce must be paid for every path that uses

edge e.

Outputs: A list of bought edges and rented

edges.

10

Structure of the Optimal Solution

It is not hard to see that:

• The bought edges in the optimum rent or

buy network must form a Steiner tree with

s at its root.

• The rental edges form a shortest path con-

nection from each user j to the closest

point in the tree.

11

Primal and Dual Formulations

min
∑

j

∑

i

cijxij + M
∑

e∈E

ceze

s.t.
∑

i∈V

xij = 1∀j

∑

eoutofS

Ze ≥
∑

i∈S

xis −
∑

i∈S

xitforallS ⊆ V

∑

eoutofS

Ze ≥
∑

i∈S

xis −
∑

i∈S

xitforallS ⊆ V

12

One Algorithm Idea

• Grow a ghost around every user until the

user’s ghost touches a full center or a cen-

ter the ghost is touching becomes full (as

in FL).

• A location is full if it is touched by M or

more users’ ghosts. Since there are no

opening costs, we open a center at any

full location p.

• Use the primal-dual Steiner tree algorithm

to connect the opened centers.

• Cost shares: Each user pays for its rental

edges to connect to a center. Share the

costs of buying edges to a center among

the users of that center.

13

Primal-Dual Steiner Tree Algorithm

• Start with each center in a separate com-
ponent.

• Grow a ghost around each center.

• When two ghosts touch:

– Check if the two centers are in the same com-
ponent.

– If NOT, buy a shortest path between the ghost
centers, merging the two components into one.

– The center p of the first ghost to reach the
source s is allowed to buy a shortest path be-
tween p and s.

• The algorithm incurs a cost M per time
unit for growing each component that doesn’t
contain the root vertex s.

14

Problems

1. If we open all full centers many more cen-

ters are opened than necessary.

2. The cost of building a Steiner tree on all

centers may be very large.

3. Each user may be connected to multiple

centers.

4. Making decisions on how to allocate users

to centers is necessarily influenced by the

addition of new users. It is hard to guar-

antee cross-monotonicity.

15

A Better Idea

Simultaneously grow ghosts around users (to

determine rental edges) and build a Steiner

tree (to determine which edges to buy).

Simplifying Assumption: It is convenient to think

of an edge e as a line segment of length ce

containing a continuum of points. The term

location refers to both original vertices and in-

termediate points.

It has been shown that a solution that is al-

lowed to rent and buy edge segments arbitrarily

can be transformed into a solution that does

not use intermediate points of no greater cost.

16

Definitions

B(j, t): the ghost around j with radius t.

C: the (time-varying) set of all locations that
have been reached by M or more user ghosts.
At any time, C can be represented as a collec-
tion of vertices, edges, and segments of edges.

Let C ⊆ C.

Connected component of C: any inclusion-maximal
C ⊆ C such that any two location p1, p2 ∈ C
are joined by a path lying completely within C.

We say that a user j at time t is connected to
a component C of C if B(j, t) ∪ C 6= ∅.

A user j is satisfied if it is connected to a
component containing the source vertex s.

t(j): the time when user j first becomes con-
nected to a component.

t′(j): the time when user j becomes satisfied.

17

Algorithm

The algorithm maintains a list of components
C. Initialize: C = ∅.

Begin growing a ghost around each user. As
time progresses, a user’s ghost may reach an-
other user’s location.

Let S be this set of users that have reached
a location p. When |S| ≥ M , we add the set
∩j∈SB(j, t) of locations as a new component
of C. At this time, location p is consider to be
full.

We declare a full p open if at time t(p) there
is no open center within a radius 2t(p) of p.

As time progresses, two components may touch.
When this occurs, we join the components by
constructing a shortest path between their cen-
ters.

We continue until all users are satisfied and C
contains a single component.

18

Cost Shares

We should make every user pay for the rental
costs associated with him. If a user is con-
nected to multiple components, we only let
him contribute to the component where his
share is the smallest.

Let J(C) denote the set of users connected to
C.

For a connected user j, let aj(t) be the maxi-
mum size |J(C)| over all components C that j

is connected to at time t.

Define fj as follows: fj(t) = 1 for 0 ≤ t <

t(j), fj(t) = M/aj(t) for t(j) ≤ t < t′(j), and
fj(t) = 0 for t > t′(j).

Define α and α′ for each user as follows:

αj =
∫ t′(j)

0
fj(t)dt and α′j =

∫ t(j)

0
fj(t)dt = t(j).

19

Maintaining Key Properties

Theorem (Cross-Monotonicity). The cost

shares α and α′ are cross-monotonic functions

of the set J.

Proof sketch. By adding more users we can

only make the set C larger, and hence make

each user connect earlier. Moreover, each com-

ponent of C can only increase by adding more

users. Hence, as the number of users con-

nected to that component increases the cost

shares can only grow slower.

Theorem (Competitiveness). Every feasible

solution to the single source rent or buy in-

stance has a cost of at least max (1/2
∑

j∈J αj,∑
j∈J α′j).

20

α-Approximate Cost Recovery

Lemma. Let p be an open center, and let

j ∈ Sp. Then 3α′j ≥ t(p). For a j that does

not belong to any Sp, there is an open ghost

center p such that c(j, p) ≤ 3α′j.

This lemma shows that the cost shares α′ can
pay for 1/3 of the rental cost of the network

(similar to the facility location case).

Lemma. The cost of the tree we buy is at

most 6
∑

j αj.

Bounding the tree cost (next slide).

21

Bounding the Tree Cost

We can think of the algorithm as incurring a

cost M per time unit for growing each compo-

nent that does not contain s, the root vertex.

If a(t) denotes the number of non-root compo-

nents at time t, the total cost of growing the

components is

M
∫ ∞
0

a(t)dt

where the integral is over the entire execution

of the algorithm.

By standard arguments, the cost of the tree

constructed is at most two times the growing cost.

22

Bounding the Tree Cost, con’t

For each Steiner component C′ we define a
(time varying) set Contrib(C′) of users that will
be responsible for maintaining a steady flow of
funding of at least M/3 per time unit from the
time increments fj(t) of their cost shares.

Thus we have that, at any time t, the users
are able to collect Ma(t) revenue from their
contributions at time t/3. Hence:

∫ ∞
0

Ma(t)dt ≤
∫ ∞
0

∑

j

fj(t/3)dt

= 3
∫ ∞
0

∑

j

fj(t)dt = 3
∑

j

αj

Since M
∫∞
0 a(t)dt can pay for half of the tree,

the buying costs of our solution does not ex-
ceed 6

∑
j αj.

23

Main Result

Lemma. The cost of the solution constructed

is at most
∑

j(3α′j + 6αj).

Follows from previous slides.

Theorem. The cost shares are cross-monotonic,

competitive, and recover 1/15 fraction of the

cost of the solution constructed.

The 1/15 approximation factor follows from

the fact that a feasible solution has a cost of

at least: max (1/2
∑

j∈J αj,
∑

j∈J α′j), and the

bound stated above.

24

