
Lecture 17

Solving LPs/SDPs using
Multiplicative Weights∗

In the last lecture we saw the Multiplicative Weights (MW) algorithm and how it could be
used to effectively solve the experts problem in which we have many experts and wish to
make predictions that are approximately as good as the predictions made by the best expert.
In this lecture we will see how to apply the MW algorithm to efficiently approximate the
optimal solution to LPs and SDPs.

17.1 Multiplicative Weights

Recall the following result from Lecture 16 about the “Hedge” algorithm:

Theorem 17.1. Suppose the cost vectors are m̄(t) ∈ [−1, 1]N . Then for any ε ≤ 1, and for
any T , the Hedge algorithm guarantees that for all i ∈ [m],∑

t≤T

p̄(t) · m̄(t) ≤
∑
t≤T

m̄
(t)
i + ε+

lnN

ε

So the total cost paid by the algorithm is no more than an additive factor of ε + lnN
ε

worse than the cost incurred by any individual component of the cost vector. Theorem 17.1
implies a similar result for the average cost incurred per round. (One can get a similar result

for the MW algorithm, where instead of the update rule w
(t)
i ← w

(t)
i · exp(−εm(t)

i ), we used

the rule w
(t)
i ← w

(t)
i · (1− εm

(t)
i ).)

Corollary 17.2. Suppose the cost vectors are m̄(t) ∈ [−ρ, ρ]N . Then for any ε ≤ 1
2
, and for

any T ≥ 4 lnN
ε2

ρ2, the Hedge algorithm guarantees than for all i ∈ [m]

1

T

∑
t≤T

p̄(t) · m̄(t) ≤ 1

T

∑
t≤T

m̄
(t)
i + ε

*Lecturer: Anupam Gupta. Scribe: Tim Wilson.
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Note: We did not cover this in lecture, but one can show that if the cost vectors are in [0, ρ],
then using the MW algorithm, the setting T ≥ 4 lnN

ε2 ρ suffices to get the same guarantee of

Lemma 17.3. Suppose the cost vectors are m̄(t) ∈ [0, ρ]N . Then for any ε ≤ 1
2 , and for any

T ≥ 4 lnN
ε2 ρ, the MW algorithm guarantees than for all i ∈ [m]

1
T

∑
t≤T

p̄(t) · m̄(t) ≤ 1
T

∑
t≤T

m̄
(t)
i + ε

A proof of this can be found in the Arora, Hazan, and Kale survey [AHK05].

17.2 Solving LPs with Multiplicative Weights

We will use the MW algorithm to help solve LPs with m constraints of the form

min c>x

s.t. Ax ≥ b

x ≥ 0

Supposing that we know c>x∗ = OPT (by binary search), we will aim to find an ε-approximate
solution x̃ such that

c>x̃ = OPT

Ax̃ ≥ b− ε1
x̃ ≥ 0

or output “infeasible” if no solution exists. The runtime for this will be O
(
ρ2 logm

ε2

)
where ρ

is the “width” of the LP which will be defined shortly.

17.2.1 Simplifying the Constraints

Instead of searching for solutions x ∈ Rn, we will package together the “easy” constraints
into the simple convex region

K = {x ∈ Rn | x ≥ 0, c>x = OPT}

Now we wish to solve Ax ≥ b such that x ∈ K. Note that this is particularly easy to solve
if Ax ≥ b is only one constraint, i.e., we are trying to determine whether ∃x ∈ K such that
α>x ≥ β for some α ∈ Rn, β ∈ R. For example, if c ≥ 0 and

max
i
αi

OPT

ci
≥ β

we can set x = OPT
ci
ei which will satisfy our constraints; else we could output Infeasible.

For general c we are essentially reduced to solving an LP over two constraints, which while
not as trivial as this, is still simple.

We will henceforth assume we have an oracle that given α ∈ Rn, β ∈ R, and K ⊆ Rn

either returns x ∈ Rn such that α>x ≥ β, or correctly asserts that there is no such x.
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17.2.2 Using Multiplicative Weights

We will use this oracle that allows us to satisfy one constraint (αx ≥ β) for k ∈ K, along
with the MW algorithm to get an algorithm satisfy all of the constraints Ax ≥ b for x ∈ K.

Each of the constraints a
|
itopx ≥ bi will be viewed as an “expert” for a total of m

experts. Each round we will produce a vector p̄(t) that will give us a convex combination of
the constraints as follows

p̄(t) · A︸ ︷︷ ︸
α(t)

x ≥ p̄(t) · b︸ ︷︷ ︸
β(t)

Using our oracle, we can determine whether α(t)x ≥ β(t) has some solution x(t) ∈ K, or
if no such solution exists. Clearly if no solution exists, then Ax ≥ b is infeasible over K,
so our LP is infeasible. (It’s easy to see the contrapositive: if there were a solution to
Ax ≥ b, x ∈ K, then this vector x would also satisfy α(t)x ≥ β(t); here we use the fact that
p̄(t) ≥ 0.) Moreover, the vector p̄(t) serves as proof of this infeasibility.

Otherwise, we will set our cost vector so that m̄
(t)
i = aix

(t) − bi, update our weights and
proceed with the next round. If we have not determined the LP to be infeasible after T
rounds we will terminate and return the solution

x̃ =
1

T

∑
t≤T

x(t)

Why do we set our cost vectors this way? It almost seems like we should incur no cost
when aix

(t) − bi ≥ 0 (i.e., when we satisfy this constraint), whereas we are incurring a

higher cost the more we satisfy it. Well, the idea is whenever a
(t)
i x− bi is positive, we have

oversatisfied the constraint. Giving a positive cost to this constraint causes us to reduce
the weight of this constraint in this next round. This works analogously to the experts
problem where an expert who is wrong (has high cost) is given less credence (less weight)

in future rounds. Similarly, for any constraint in which a
(t)
i x− bi is negative, we have failed

the constraint. Giving a negative cost to this constraint causes us to increase the weight of
this constraint in the next round.

Initially we set all of our weights equal to express our ignorance; “all constraints are
equally hard”. Whenever we update our weights we reduce the weights of constraints we
oversatisfied so we’ll cover them less in future rounds. We increase the weights of constraints
we didn’t satisfy so we’ll cover them more in future rounds. Our hope is that over time this
will converge to a solution where we satisfy all constraints to a roughly equal extent.

17.2.3 Analyzing Multiplicative Weights

Supposing that we do not discover our LP is infeasible, how many rounds should we run and
how good will our solution be? If we define

ρ = max{1, max
i,x∈K
{|a>i x− bi|}}
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to be the maximum magnitude of any cost assigned to a constraint, then we may immediately
apply Corollary 17.2 to find that after T ≥ 4 lnn

ε2
ρ2 rounds,

1

T

∑
t≤T

p̄(t) · m̄(t) ≤ 1

T

∑
t≤T

m̄
(t)
i + ε

where ε ≤ 1
2
, m̄(t) = a>i x

(t)− bi ∈ [−ρ, ρ]n for all i ∈ [m], and each x(i) ∈ K. Note that we do

not actually need to find ρ; it suffices to keep track of ρt = max{1,maxi,t′≤t{|a>i x(t′) − bi|}},
the maximum cost seen so far, and run until T ≥ 4 lnn

ε2
ρ2
T .

What guarantee do we get? On the left hand side of this inequality we have

p̄(t) · m̄(t) = p̄(t) · (Ax(t) − b)
= p̄(t) · Ax(t) − p̄(t) · b
≥ 0

where the final inequality holds due to our oracle’s properties. Therefore the left hand side
is at least 0. And on the right hand side we have

1

T

∑
t≤T

m̄
(t)
i =

1

T

∑
t≤T

a>i x
(t) − bi

= a>i

(
1

T

∑
t≤T

x(t)

)
− bi

= a>i x̃− bi

Combining this with our inequality for the right hand side we get

∀i : a>i x̃− bi + ε ≥ 0

a>i x̃ ≥ bi − ε

Therefore we can obtain an ε-feasible solution to Ax ≥ b, x ∈ K in time O
(

logm
ε2
ρ2
)

time
where ρ = max{1, max

i,x∈K
{|a>i x− bi|}} is the width of the LP.

17.2.4 Example: Minimum Set Cover

Recall the minimum fractional set cover problem with m sets F = {S1, S2, . . . , Sm} and n
elements U . The goal is to pick fractions of sets in order to cover each element to an extent
of 1: i.e., to solve the following LP—

min
∑
S

xS

s.t.
∑
S3e

xS ≥ 1 ∀e

xS ≥ 0



LECTURE 17. SOLVING LPS/SDPS USING MULTIPLICATIVE WEIGHTS 5

Suppose we know OPT = L ∈ [1,m], so K = {
∑

S xS = L, xS ≥ 0}. We want to find x ∈ K
such that

∑
S3e xS ≥ 1 for all elements e. Our oracle, given some p̄, must try to find x ∈ K

such that ∑
e

p̄e
∑
S3e

xS ≥
∑
e

p̄e · 1 = 1

⇐⇒
∑
S

xS
∑
e∈S

p̄e ≥ 1

⇐⇒
∑
S

xS · p(S) ≥ 1

where p(S) is the total weight of elements in S. This quantity is clearly maximized over K
by concentrating on a set with the maximum weight and setting

xS =

{
L for some S ∈ F maximizing p(S)

0 for all other S

Note that the width of this LP is at most

max
e

∑
S3e

xS − 1 ≤ L− 1 ≤ m− 1

How does the weight update step work? Initially we set w
(1)
i for all constraints. Whenever a

set is overcovered, we reduce the weight of that set so we don’t try as hard to cover it in the
next step. Whenever a set is undercovered we increase the weight of the set so we try harder
to cover it in the next step. Now, after 4L2 lnn/ε2 steps we will obtain an ε-approximate
solution x̃ such that ∑

S

x̃S = L∑
S3e

x̃S ≥ 1− ε

x̃ ≥ 0

Note that, in this case, the constraint matrix is completely nonnegative, and we can scale
up our solution to get a feasible solution x̂ = x̃/(1− ε) so that∑

S

x̂S =
L

1− ε
≈ L(1 + ε)∑

S3e

x̂S ≥ 1

x̃ ≥ 0
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17.2.5 Comments

1. The scaling we used for minimum set cover to obtain a non-optimal, feasible solution
can be applied to any LP where b > 1ε—indeed, we could just multiply all the x values
by maxi 1/(bi − ε). This is often useful, particularly when we’re going to round this
LP solution and incur further losses, and hence losing this factor may be insignificant.

2. If the constraint matrix A is all positive the problem is said to be a covering problem
(we are just interested in putting enough weight on x to cover every constraint). If
the constraint matrix is all negative—or equivalently, if we have Ax ≤ b with an all-
positive matrix A—the problem is said to be a packing problem (we are packing as
much weight into x as possible without violating any constraint). In either case, we
can use a similar scaling trick to get a non-optimal, feasible solution.

In this case we can reduce the run-time further. Assume we have a covering problem:
min{c>x | Ax ≥ b, x ≥ 0}. By scaling, we can transform this into a problem of the
form

min{c>x | Ax ≥ 1, x ≥ 0}

The uniform values of bi = 1 allows us to set the cost vectors m
(t)
i = a>i x

(t) instead

of m
(t)
i = a>i x

(t) − 1; this translation does not change the algorithm. But the positive
cost vectors allow us to use Lemma 17.3 to reduce the runtime from O

(
logm
ε2
ρ2
)

to

O
(

logm
ε2
ρ
)
.

3. In general, the width of our LPs may not turn out to be as nice. For example, in the
weighted minimum set cover problem

min
∑
S

cSxS

s.t.
∑
S3e

xS ≥ 1 ∀e

xS ≥ 0

our optimum, and hence the width, can increase to as much as m· maxS cS
minS cS

. An approach
developed by Garg and Könemann [GK07] can be useful to solve the problems without
the width penalty.

4. The MW algorithm does not need a perfect oracle. Being able to determine given
α ∈ Rn and β ∈ R if there is no x ∈ K with α|topx ≥ β, or else returning an x ∈ K
such that α>x ≥ β − ε′ is sufficient for our purposes. This gives us solutions x̃ ∈ K
such that

Ax ≥ b− (ε+ ε′)1.

5. There was exactly one point where we used the fact that our constraints were linear.
That was concluding that

1

T

∑
t≤T

a>i x
(t) − bi = a>i x̃− bi
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However, we can make a similar claim for any set of convex constraints as well: if we
wanted to find x ∈ K such that fi(x) ≤ 0 for i ∈ [m], with the fi’s convex. Then

as long as we could solve the oracle and find x ∈ K with
∑

i p
(t)
i fi(x) ≤ 0 efficiently,

the rest of the argument would go through. In particular, in the step where we used
linearity, we could instead use

1

T

∑
t≤T

fi(x
(t)) ≤ fi

(
1

T

∑
t≤T

x(t)

)
= fi(x̃).

17.3 Solving SDPs with Multiplicative Weights

Suppose we now move to solving SDPs of the form

minC •X
s.t. Ai •X ≥ bi

X � 0

note that the first few constraints are linear constraints. It is only the psd-ness constraint
that is non-linear—so we only need to modify our MW algorithm by absorbing the X � 0
constraint into the oracle. It will be also convenient to require the constraint tr(X) = 1 as
well: usually we can guess the trace of the solution X. (If the trace of the solution we seek
is not 1 but R, we can scale the problem by R to get unit trace.) Then the oracle we must
implement is this:

Let K := {X | X � 0, tr(X) = 1}. Given a symmetric matrix A ∈ Rn×n and
β ∈ R, does there exist X ∈ K such that A •X ≥ β?

(Again, A, β will be obtained in the algorithm by setting A(i) := p
(t)
i Ai, and β(i) := p

(t)
i bi.)

But we know from Lecture 12 that this is equivalent to asking whether the maximum eigen-
value of the symmetric matrix A is at least β. Indeed, if this is so, and if λmax is the
maximum eigenvalue of A with unit eigenvector x, then

A • (xx>) = tr(A>xx>)

= tr(Axx>)

= tr(λmaxxx
>)

= λmax

so our oracle should return X = xx>, else it should return Infeasible. Moreover, using
the Observation #4 on the previous page, it suffices to return x such that x>Ax ≥ λmax− ε.
How fast this can be done depends on the particular structure of the matrix A; in the next
section we see that for the max-cut problem, the matrix A itself is psd, and hence we can
find such an x relatively quickly.
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17.3.1 Example: Max Cut

This part is loosely based on the paper of Klein and Lu [KL96]. Recall the Max Cut SDP
we derived in Lecture 12:

max
1

4
L •X

s.t. (eie
>
i ) •X = 1 ∀i

X � 0

As usual, we will think of the edge weights as summing to 1: this means that tr(L) =∑
i Lii = −

∑
i 6=j Lij = 1. If we let b = OPT and scale X by 1/n, we are looking for

feasibility of the constraints:

n

4b
L •X ≥ 1

n(eie
>
i ) •X = 1 ∀i

X � 0

Finally, if we take K = {X | X � 0, tr(X) = 1}, the above SDP is equivalent to finding
X ∈ K such that

n

4b
L •X ≥ 1

n(eie
>
i ) •X ≥ 1 ∀i

(This is because tr(X) = 1 means
∑

iXii = 1. Since we have the constraints n(eie
>
i ) •X =

nXii ≥ 1, this means Xii = 1/n for all i.) By the discussions of the previous section, our
oracle will need to check whether there exists X ∈ K such that D(t) •X ≥ 1, where

D(t) = p
(t)
0

n

4b
L+

n∑
i=1

p
(t)
i n(eie

>
i ).

And again, is is equivalent to checking whether λmax(D(t)) ≥ 1.

Implementing the oracle. It is useful to note that D(t) is positive semidefinite: indeed, it is
the sum of the Laplacian (which is psd), and a bunch of matrices eie

>
i (which are psd).

Note: In Homework #6, you will show that for any psd matrix D, the “power method” starting
with a random unit vector can find x ∈ K such that D • (xx>) ∈ [λmax(D)/(1 + ε), λmax(D)].
The algorithm succeeds with high probability, and runs in time O(ε−1m log n) time, where m
is the number of edges in G (and hence the number of non-zeroes in L).

So we can run this algorithm: if it answers with an x such that D(t) • (xx>) is smaller than
1/(1+ε), we answer saying λmax(D(t)) < 1. Else we return the vector x: this has the property
that D(t) • (xx>) ≥ 1/(1 + ε) ≥ 1− ε. Now, using the Observation #4 on the previous page,
we know this will suffice to get a solution that has an O(ε) infeasibility.

Bounding the width. The width of our algorithm is the maximum possible magnitude of
D(t) • X for X ∈ K, i.e., the maximum possible eigenvalue of D(t). Since D(t) is positive
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semidefinite all of its eigenvalues are non-negative. Moreover, tr(L) = 1, and also tr(eie
>
i ) =

1. So

λmax(D(t)) ≤
∑

λi(D
(t)) = tr(D(t))

= tr

(
p

(t)
0

n

4b
L+

n∑
i=1

p
(t)
i n(eie

>
i )

)

= p
(t)
0

n

4b
tr(L) +

n∑
i=1

p
(t)
i n tr(eie

>
i )

= n(1 + 1/4b).

Finally, the max-cut values we are interested in lie between 1/2 (since the max-cut is at least
half the edge-weight) and 1. So b ∈ [1/2, 1], and the width is O(n).

Running Time. Setting the width ρ = O(n) gives us a runtime of

O

(
n2 log n

ε2
Toracle

)
which we can reduce to

O

(
n log n

ε2
Toracle

)
using Lemma 17.3, since our cost vectors can be made all nonnegative. Finally, plugging in
our oracle gives a final runtime of

O

(
mn log2 n

ε3

)
,

where m is the number of edges in our graph.

Note: We can now scale the “average” matrix X̃ by n to get a matrix X̂ satisfying:

1
4L • X̂ ≥ b(1− ε)

X̂ii ≥ 1− ε ∀i

tr(X̂) = n

X̂ � 0

The attentive reader will observe that this is not as nice as we’d like. We’d really want
each X̂ii ∈ [1 − ε, 1 + ε]—then we could transform this solution into one where Xii = 1 and
1
4L • X̂ ≥ b(1− ε

O(1)).

What we have only guarantees that Xii ∈ [1 − ε, 1 + nε], and so we’d need to set ε ≤ 1/n for
any non-trivial guarantees. This would still give us a run-time of O(ε−3mn4poly log n)—still
polynomial (and useful to examplify the technique), but it could be better. One can avoid this
loss by defining K differently—in fact, in a way that is similar to Section 17.2.1—the details can
be found in [KL96]. One can do even better using the matrix multiplicative weights algorithms:
see, e.g., [AK07, Ste10].
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