1
8

CS 1501 Fall 2005
Midterm Exam 1 Solutions
The solutions are in bold.
1) (1 Point Extra Credit) Which National Football League team won the 2006 Super Bowl?
Pittsburgh Steelers
2) (20 points)..

a) What is most important reason that it is customary to ignore multiplicative constants when computing running times of algorithms and programs?
Because multiplicative constants are implementation dependent. That is, they depend up the compiler, the machine architecture, etc.
b) What is the main advantage of using a random pivot/splitter in Quicksort over picking the pivot/splitter to be the first element of the subarray? Both algorithms have expected running time Theta(n log n). But what is better about the expectation guarantee for randomized Quicksort?
For randomized quicksort you get an expected run time of Theta(n log n) on all inputs. That is, there are no bad inputs for randomized quicksort. Recall that for this deterministic version of quicksort, the running time was Theta(n2) for nearly sorted inputs.

c) Consider a system that has 5 possible messages. Each message is selected with the probability given below. Give an expression for the entropy of this message system. You need not simplify this expression.
	Message
	M1
	M2
	M3
	M4
	M5

	Probability
	.05
	.08
	.2
	.5
	.27

.05 lg (1/.05) + .08 log (1/.08) + .2 log (1/.2) + .5 lg (1/.5) + .27 log (1/.27)

d) Consider the message system given in the previous question. What does the Source Coding Theorem say about any possible encoding of these messages?
The expected number of bits used by this encoding is at least the entropy. Here the expectation is over the possible messages.

2) (15 points)
a)Assume that we have a program that is known to run in time Theta(n). Fill in the following table
	Input Size
	Machine Speed
	Time

	100,000
	1,000,000 operations/second
	1 Hour

	100,000
	3,000,000 operations/second
	1/3 hour =
20 minutes

	300,000
	1,000,000 operations/second
	3 hours

	1,000,000
	10,000,000 operations/second
	1 Hour

b)Assume that we have a program that is known to run in time Theta(n3). Fill in the following table.
	Input Size
	Machine Speed
	Time

	100,000
	1,000,000 operations/second
	1 Hour

	100,000
	3,000,000 operations/second
	1/3 hour =

20 minutes

	300,000
	1,000,000 operations/second
	27 hours

	(10)1/3 * 100,000 ~
215,000
	10,000,000 operations/second
	1 Hour

c)Explain the standard argument that the asymptotic run time of a program/algorithm becomes more important as machine speeds increase. You can base your answer on the above two tables if you like.
If the goal is to run the program on the largest input that can be handled in a fixed amount of time, then programs with higher asymptotic run times gain less from increased processor speed. In the above examples, increasing the machine speed by a factor of 10 allows the linear time algorithm to handle a 10 times larger input, while the Theta(n3) time algorithm can only handle a factor of 2 larger input.

3) Consider the mismatched character heuristic of the Boyer-Moore string matching algorithm.
a) (5 points) Show the skip array for the following pattern
Pattern:
ABCAB

The two key points are that

· The skip array value for a letter in the pattern gives information about the rightmost occurrence of letters in that pattern, and

· The skip array value for a letter not in the pattern is outside of the range of positions in the pattern.
We ended up taking many possible answers depending on whether one started the array index with 0 or 1, or whether the skip array stored the actual location of the rightmost character (as I did in the code on the board in class), or the length of the pattern minus the location of the rightmost pattern (as is done in the book)
e) (10 points) For the pattern and text strings shown below, state and justify how many total character comparisons must be done in order to match each pattern within the text string.

 Text:

ABCDXABCDYABCDZABCAB
Pattern:
ABCAB
 ABCAB

 ABCAB

 ABCAB
The last B in the pattern lines up with the X, then the Y, then the Z, and finally the last B in the Text. For each of the first 3 alignments there is one comparison. The result is 8 character comparisons
3) (15 points) Assume that you want to compress the following string with the Lempel-Ziv algorithm. Assume that you are using 4 bit codes. Assume that you have a 4 letter alphabet consisting of the letters: A, C, G, T. Assume that the initial dictionary is A=0000, C=0001, G=0010, T=0011. Give the encoded/compressed file. Show the dictionary when the algorithm terminates.
GAGATGAT
	String
	Local code
	Actual code

	A
	0
	0000

	C
	1
	0001

	G
	2
	0010

	T
	3
	0011

	GA
	4
	0100

	AG
	5
	0101

	GAT
	6
	0110

	TG
	7
	0111

OUPUT FILE: 0010 0000 0100 0011 0110

4) Consider the following Patricia Tree. Assume that the first integer in each node is the position in the string on which to branch (the first position is 1). The bit string on the second line in each node is the bit string stored in the node. Answer the following questions:

[image: image1]
a) (5 Points) For the node where the bit string is not shown, specify which bits you can deduce from the information shown. So we are looking for answer of the form “Bit 1 must be __, Bit 3 must be …”, or something like that.
For 5 points:
	Bit
	value

	1
	0

	3
	1

	6
	0

	8
	1

For 5 extra credit points
	Bit
	value

	2
	0

	4
	1

	5
	0

	7
	1

b) (5 Points) Specify the node where a Search for the bit string 00111000000 terminates.
The left/0 child of the root. That is the one with position = 3.
c) (10 Points) Show the tree resulting from inserting the bit string 00111000000.

A new node is created between the nodes with positions 3 and 6 in the tree. The 1 pointer of the position 3 node is set to this new node. The picture for this part of the tree is shown below.

[image: image2]
(15 points) Write a Java or C or C++ function that takes as a parameter an integer n, and perhaps some other parameters, and prints out all the permutations of the first n integers.
Here is a C-like solution:

Void Permutation(int n, int partial_perm[], int taken[], int depth)

if depth == n then

for (i=1; i++; i <= n) do

print(partial_perm[i])

print(newline)

else

for (i=1; i++; i <= n) do

if not taken[i] then

partial_perm[depth +1]=i

taken[i]=1

Permutation(n, partial_perm, taken, depth+1)

Taken[i]=0

[image: image3.emf]

0

1

0

0

1

1

NULL

8

6

001101000

4

10000

3

00110010000

1

000111

0

1

0

1

1

0

1

0

1

6

001101000

5

00111000000

3

00110010000

