
10/21/2014

1

Processes, Address Spaces, and
Memory Management

Jonathan Misurda

jmisurda@cs.pitt.edu

PROCESS

A running program and its associated
data

Process’s Address Space

Stack

Data (Heap)

Text (Code)

0x7fffffff

0

Data (Heap)

Globals

Linux Address Space

Operating Systems

• Manage Resources
• Abstract Details

MEMORY MANAGEMENT

10/21/2014

2

Allocation Strategies

• First fit
– Find the first free block, starting from the beginning,

that can accommodate the request

• Next fit
– Find the first free block, starting where the last search

left off, that can accommodate the request

• Best fit
– Find the free block that is closest in size to the

request

Allocation Strategies Continued

• Worst fit
– Find the free block with the most left over after

fulfilling the allocation request

• Quick fit
– Keep several lists of free blocks of common

sizes, allocate from the list that nearest matches
the request

Bitmaps

A B C D

11111100 00111000 01111111 11111000

8 16 24 32

Memory regions

Bitmap

Minimal Units of Allocation

• Break memory up into fixed sized chunks

• Easier to manage

• Need less entries in bitmap

• When memory from OS, chunk called a Page

• When chunk of disk: Block

Linked Lists

A B C D

Memory regions
A 0 6 ‐ 6 4 B 10 3 ‐ 13 4 C 17 9

‐ 29 3D 26 3

8 16 24 32

Reclaiming Freed Memory

A X B

A X

X B

X

A B

A

B

10/21/2014

3

Where Do We Store the Nodes?

_end

brk

$sp

Stack

Heap

Globals

Unallocated
Space

Buddy Allocation

Size 16

Size 4 Size 4 Size 8

Size 8 Size 8

Size 2 Size 2 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Allocation of size 2 in a region of size 16

Buddy Allocation

Size 2 Size 2 Size 4 Size 8

Allocation of size 4 in a region of size 16

Size 2 Size 2 Size 4 Size 8

Buddy De‐Allocation

Size 4 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Free region of size 2 in a region of size 16

Mark region as free

Combine with “buddy”

Buddy De‐Allocation

Size 4 Size 4 Size 8

Free region of size 1 in a region of size 16

Mark region as free

Combine with “buddies”

Size 4 Size 4 Size 8

Size 16

Size 8 Size 8

Buddy Location

• Given an allocation at address addr, where is its
buddy?

• In the previous example, we had two buddies of
size 4 at addresses 0 and 4

• Since we always halve our space, we can force all
of our sizes to be powers of 2.
• Then our two buddies only differ by 1 bit in their number

buddy = addr ^ size

