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PROCESS

A running program and its associated
data

Process’s Address Space
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Allocation Strategies

o First fit
— Find the first free block, starting from the beginning,
that can accommodate the request

e Next fit
— Find the first free block, starting where the last search
left off, that can accommodate the request

e Bestfit

— Find the free block that is closest in size to the
request
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Allocation Strategies Continued

*  Worst fit

— Find the free block with the most left over after
fulfilling the allocation request

e Quick fit
— Keep several lists of free blocks of common
sizes, allocate from the list that nearest matches
the request
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Memory regions
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Minimal Units of Allocation

» Break memory up into fixed sized chunks
« Easier to manage

* Need less entries in bitmap

« When memory from OS, chunk called a Page

* When chunk of disk: Block
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Reclaiming Freed Memory
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Where Do We Store the Nodes?

Stack
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Buddy Allocation

Allocation of size 2 in a region of size 16

Size 16

Size 8 Size 8

Size 4 Size 4 Size 8

Size2 Size2 Size 4 Size 8

Size2 Size 2 Size 4 Size 8

Buddy Allocation

Allocation of size 4 in a region of size 16
Size2 Size2 Size 4 Size 8
Size2 Size2 Size 4 Size 8

Buddy De-Allocation

Free region of size 2 in a region of size 16

Size2 Size 2 Size 4 Size 8

Mark region as free

Size2 Size2 Size 4 Size 8

Combine with “buddy”

Size 4 Size 4 Size 8

Buddy De-Allocation

Free region of size 1 in a region of size 16

Size 4 Size 4 Size 8

Mark region as free

Size 4 Size 4 Size 8

Combine with “buddies”

Size 8 Size 8

Size 16

Buddy Location

 Given an allocation at address addr, where is its
buddy?

* In the previous example, we had two buddies of
size 4 at addresses 0 and 4

« Since we always halve our space, we can force all

of our sizes to be powers of 2.
« Then our two buddies only differ by 1 bit in their number

buddy = addr " size




