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PROCESS

A running program and its associated 
data

Process’s Address Space
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Data (Heap)

Globals

Linux Address Space

Operating Systems

• Manage Resources
• Abstract Details

MEMORY MANAGEMENT
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Allocation Strategies

• First fit
– Find the first free block, starting from the beginning, 

that can accommodate the request

• Next fit
– Find the first free block, starting where the last search 

left off, that can accommodate the request

• Best fit
– Find the free block that is closest in size to the 

request

Allocation Strategies Continued

• Worst fit
– Find the free block with the most left over after 

fulfilling the allocation request

• Quick fit
– Keep several lists of free blocks of common 

sizes, allocate from the list that nearest matches 
the request
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Memory regions

Bitmap

Minimal Units of Allocation

• Break memory up into fixed sized chunks

• Easier to manage

• Need less entries in bitmap

• When memory from OS, chunk called a Page

• When chunk of disk: Block

Linked Lists
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Where Do We Store the Nodes?

_end
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$sp

Stack

Heap

Globals

Unallocated 
Space

Buddy Allocation

Size 16

Size 4 Size 4 Size 8

Size 8 Size 8

Size 2 Size 2 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Allocation of size 2 in a region of size 16

Buddy Allocation

Size 2 Size 2 Size 4 Size 8

Allocation of size 4 in a region of size 16

Size 2 Size 2 Size 4 Size 8

Buddy De‐Allocation

Size 4 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Size 2 Size 2 Size 4 Size 8

Free region of size 2 in a region of size 16

Mark region as free

Combine with “buddy”

Buddy De‐Allocation

Size 4 Size 4 Size 8

Free region of size 1 in a region of size 16

Mark region as free

Combine with “buddies”

Size 4 Size 4 Size 8

Size 16

Size 8 Size 8

Buddy Location

• Given an allocation at address addr, where is its 
buddy?

• In the previous example, we had two buddies of 
size 4 at addresses 0 and 4

• Since we always halve our space,  we can force all 
of our sizes to be powers of 2. 
• Then our two buddies only differ by 1 bit in their number

buddy = addr ^ size


