Processes, Address Spaces, and
Memory Management

Jonathan Misurda

jmisurda@cs.pitt.edu

10/21/2014

PROCESS

A running program and its associated
data

Process’s Address Space

OX7FFFFfFff

Stack

Text (Code)

0

Linux Address Space

Harnal wpace
1 Utes code CAMIE read from ner write 15 Thase sdiresies,
salng 30 rewlts 1n » Fault Secotossen -+ Tats_L1N

i Stack (grows down)

File magpings (tncledlng dynsmic Bibraries) snd smomymous
PRI

| | g
| 3tores the Biasry image of the process (e.5.. (B30/Een20) | o penaneca

Operating Systems

. Manage Resources
Abstract Details

MEMORY MANAGEMENT

Allocation Strategies

o First fit
— Find the first free block, starting from the beginning,
that can accommodate the request

e Next fit
— Find the first free block, starting where the last search
left off, that can accommodate the request

e Bestfit

— Find the free block that is closest in size to the
request

10/21/2014

Allocation Strategies Continued

* Worst fit

— Find the free block with the most left over after
fulfilling the allocation request

e Quick fit
— Keep several lists of free blocks of common
sizes, allocate from the list that nearest matches
the request

Bitmaps

Memory regions

IIA\JJ\\IBIIIIKKICIIIJDEL_‘

8 16 24 32
[11111100]00111000[01111111] 11111000 |
Bitmap

Minimal Units of Allocation

» Break memory up into fixed sized chunks
« Easier to manage

* Need less entries in bitmap

« When memory from OS, chunk called a Page

* When chunk of disk: Block

Linked Lists

8 16 u G
Memory regions
A0/ 6+—-]6 4+—B10[3— - 13 4—%
W-‘B 3

Reclaiming Freed Memory

[Alx |8 [a] |8
LAl x] 7N N—
TR AT ——
LI x] [

10/21/2014

Where Do We Store the Nodes?

Stack

$sp

Unallocated

Space

brk

—end Globals

Buddy Allocation

Allocation of size 2 in a region of size 16

Size 16

Size 8 Size 8

Size 4 Size 4 Size 8

Size2 Size2 Size 4 Size 8

Size2 Size 2 Size 4 Size 8

Buddy Allocation

Allocation of size 4 in a region of size 16
Size2 Size2 Size 4 Size 8
Size2 Size2 Size 4 Size 8

Buddy De-Allocation

Free region of size 2 in a region of size 16

Size2 Size 2 Size 4 Size 8

Mark region as free

Size2 Size2 Size 4 Size 8

Combine with “buddy”

Size 4 Size 4 Size 8

Buddy De-Allocation

Free region of size 1 in a region of size 16

Size 4 Size 4 Size 8

Mark region as free

Size 4 Size 4 Size 8

Combine with “buddies”

Size 8 Size 8

Size 16

Buddy Location

 Given an allocation at address addr, where is its
buddy?

* In the previous example, we had two buddies of
size 4 at addresses 0 and 4

« Since we always halve our space, we can force all

of our sizes to be powers of 2.
« Then our two buddies only differ by 1 bit in their number

buddy = addr " size

