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Linkers part 1 
August 22, 2007 at 11:30 pm · Filed under Programming  

I’ve been working on and off on a new linker. To my surprise, I’ve discovered in talking about this 

that some people, even some computer programmers, are unfamiliar with the details of the linking 

process. I’ve decided to write some notes about linkers, with the goal of producing an essay similar 

to my existing one about the GNU configure and build system. 

As I only have the time to write one thing a day, I’m going to do this on my blog over time, and 

gather the final essay together later. I believe that I may be up to five readers, and I hope y’all will 

accept this digression into stuff that matters. I will return to random philosophizing and minding 

other people’s business soon enough. 

A Personal Introduction 

Who am I to write about linkers? 

I wrote my first linker back in 1988, for the AMOS operating system which ran on Alpha Micro 

systems. (If you don’t understand the following description, don’t worry; all will be explained below). 

I used a single global database to register all symbols. Object files were checked into the database 

after they had been compiled. The link process mainly required identifying the object file holding the 

main function. Other objects files were pulled in by reference. I reverse engineered the object file 

format, which was undocumented but quite simple. The goal of all this was speed, and indeed this 

linker was much faster than the system one, mainly because of the speed of the database. 

I wrote my second linker in 1993 and 1994. This linker was designed and prototyped by Steve 

Chamberlain while we both worked at Cygnus Support (later Cygnus Solutions, later part of Red Hat). 

This was a complete reimplementation of the BFD based linker which Steve had written a couple of 

years before. The primary target was a.out and COFF. Again the goal was speed, especially compared 
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to the original BFD based linker. On SunOS 4 this linker was almost as fast as running the cat 

program on the input .o files. 

The linker I am now working, called gold, on will be my third. It is exclusively an ELF linker. Once 

again, the goal is speed, in this case being faster than my second linker. That linker has been 

significantly slowed down over the years by adding support for ELF and for shared libraries. This 

support was patched in rather than being designed in. Future plans for the new linker include 

support for incremental linking–which is another way of increasing speed. 

There is an obvious pattern here: everybody wants linkers to be faster. This is because the job which 

a linker does is uninteresting. The linker is a speed bump for a developer, a process which takes a 

relatively long time but adds no real value. So why do we have linkers at all? That brings us to our 

next topic. 

A Technical Introduction 

What does a linker do? 

It’s simple: a linker converts object files into executables and shared libraries. Let’s look at what that 

means. For cases where a linker is used, the software development process consists of writing 

program code in some language: e.g., C or C++ or Fortran (but typically not Java, as Java normally 

works differently, using a loader rather than a linker). A compiler translates this program code, 

which is human readable text, into into another form of human readable text known as assembly 

code. Assembly code is a readable form of the machine language which the computer can execute 

directly. An assembler is used to turn this assembly code into an object file. For completeness, I’ll 

note that some compilers include an assembler internally, and produce an object file directly. Either 

way, this is where things get interesting. 

In the old days, when dinosaurs roamed the data centers, many programs were complete in 

themselves. In those days there was generally no compiler–people wrote directly in assembly code–

and the assembler actually generated an executable file which the machine could execute directly. 

As languages liked Fortran and Cobol started to appear, people began to think in terms of libraries 

of subroutines, which meant that there had to be some way to run the assembler at two different 

times, and combine the output into a single executable file. This required the assembler to generate 

a different type of output, which became known as an object file (I have no idea where this name 

came from). And a new program was required to combine different object files together into a single 



executable. This new program became known as the linker (the source of this name should be 

obvious). 

Linkers still do the same job today. In the decades that followed, one new feature has been added: 

shared libraries. 

More tomorrow.  

Linkers part 2 
August 23, 2007 at 10:18 pm · Filed under Programming  

I’m back, and I’m still doing the linker technical introduction. 

Shared libraries were invented as an optimization for virtual memory systems running many 

processes simultaneously. People noticed that there is a set of basic functions which appear in 

almost every program. Before shared libraries, in a system which runs multiple processes 

simultaneously, that meant that almost every process had a copy of exactly the same code. This 

suggested that on a virtual memory system it would be possible to arrange that code so that a single 

copy could be shared by every process using it. The virtual memory system would be used to map 

the single copy into the address space of each process which needed it. This would require less 

physical memory to run multiple programs, and thus yield better performance. 

I believe the first implementation of shared libraries was on SVR3, based on COFF. This 

implementation was simple, and basically assigned each shared library a fixed portion of the virtual 

address space. This did not require any significant changes to the linker. However, requiring each 

shared library to reserve an appropriate portion of the virtual address space was inconvenient. 

SunOS4 introduced a more flexible version of shared libraries, which was later picked up by SVR4. 

This implementation postponed some of the operation of the linker to runtime. When the program 

started, it would automatically run a limited version of the linker which would link the program 

proper with the shared libraries. The version of the linker which runs when the program starts is 

known as the dynamic linker. When it is necessary to distinguish them, I will refer to the version of 

the linker which creates the program as the program linker. This type of shared libraries was a 

significant change to the traditional program linker: it now had to build linking information which 

could be used efficiently at runtime by the dynamic linker. 
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That is the end of the introduction. You should now understand the basics of what a linker does. I 

will now turn to how it does it. 

Basic Linker Data Types 

The linker operates on a small number of basic data types: symbols, relocations, and contents. 

These are defined in the input object files. Here is an overview of each of these. 

A symbol is basically a name and a value. Many symbols represent static objects in the original 

source code–that is, objects which exist in a single place for the duration of the program. For 

example, in an object file generated from C code, there will be a symbol for each function and for 

each global and static variable. The value of such a symbol is simply an offset into the contents. This 

type of symbol is known as a defined symbol. It’s important not to confuse the value of the symbol 

representing the variable my_global_var with the value of my_global_var itself. The value of the 

symbol is roughly the address of the variable: the value you would get from the expression 

&my_global_var in C. 

Symbols are also used to indicate a reference to a name defined in a different object file. Such a 

reference is known as an undefined symbol. There are other less commonly used types of symbols 

which I will describe later. 

During the linking process, the linker will assign an address to each defined symbol, and will resolve 

each undefined symbol by finding a defined symbol with the same name.  

A relocation is a computation to perform on the contents. Most relocations refer to a symbol and to 

an offset within the contents. Many relocations will also provide an additional operand, known as the 

addend. A simple, and commonly used, relocation is “set this location in the contents to the value of 

this symbol plus this addend.” The types of computations that relocations do are inherently 

dependent on the architecture of the processor for which the linker is generating code. For example, 

RISC processors which require two or more instructions to form a memory address will have separate 

relocations to be used with each of those instructions; for example, “set this location in the contents 

to the lower 16 bits of the value of this symbol.” 

During the linking process, the linker will perform all of the relocation computations as directed. A 

relocation in an object file may refer to an undefined symbol. If the linker is unable to resolve that 

symbol, it will normally issue an error (but not always: for some symbol types or some relocation 

types an error may not be appropriate). 



The contents are what memory should look like during the execution of the program. Contents have 

a size, an array of bytes, and a type. They contain the machine code generated by the compiler and 

assembler (known as text). They contain the values of initialized variables (data). They contain static 

unnamed data like string constants and switch tables (read-only data or rdata). They contain 

uninitialized variables, in which case the array of bytes is generally omitted and assumed to contain 

only zeroes (bss). The compiler and the assembler work hard to generate exactly the right contents, 

but the linker really doesn’t care about them except as raw data. The linker reads the contents from 

each file, concatenates them all together sorted by type, applies the relocations, and writes the result 

into the executable file. 

Basic Linker Operation 

At this point we already know enough to understand the basic steps used by every linker. 

• Read the input object files. Determine the length and type of the contents. Read the symbols.  

• Build a symbol table containing all the symbols, linking undefined symbols to their definitions.  

• Decide where all the contents should go in the output executable file, which means deciding 

where they should go in memory when the program runs.  

• Read the contents data and the relocations. Apply the relocations to the contents. Write the 

result to the output file.  

• Optionally write out the complete symbol table with the final values of the symbols.  

More tomorrow.  

Linkers part 3 
August 24, 2007 at 10:25 pm · Filed under Programming  

Continuing notes on linkers. 

Address Spaces 

An address space is simply a view of memory, in which each byte has an address. The linker deals 

with three distinct types of address space. 

Every input object file is a small address space: the contents have addresses, and the symbols and 

relocations refer to the contents by addresses. 
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The output program will be placed at some location in memory when it runs. This is the output 

address space, which I generally refer to as using virtual memory addresses. 

The output program will be loaded at some location in memory. This is the load memory address. On 

typical Unix systems virtual memory addresses and load memory addresses are the same. On 

embedded systems they are often different; for example, the initialized data (the initial contents of 

global or static variables) may be loaded into ROM at the load memory address, and then copied into 

RAM at the virtual memory address. 

Shared libraries can normally be run at different virtual memory address in different processes. A 

shared library has a base address when it is created; this is often simply zero. When the dynamic 

linker copies the shared library into the virtual memory space of a process, it must apply relocations 

to adjust the shared library to run at its virtual memory address. Shared library systems minimize the 

number of relocations which must be applied, since they take time when starting the program. 

Object File Formats 

As I said above, an assembler turns human readable assembly language into an object file. An object 

file is a binary data file written in a format designed as input to the linker. The linker generates an 

executable file. This executable file is a binary data file written in a format designed as input for the 

operating system or the loader (this is true even when linking dynamically, as normally the operating 

system loads the executable before invoking the dynamic linker to begin running the program). 

There is no logical requirement that the object file format resemble the executable file format. 

However, in practice they are normally very similar. 

Most object file formats define sections. A section typically holds memory contents, or it may be 

used to hold other types of data. Sections generally have a name, a type, a size, an address, and an 

associated array of data. 

Object file formats may be classed in two general types: record oriented and section oriented. 

A record oriented object file format defines a series of records of varying size. Each record starts 

with some special code, and may be followed by data. Reading the object file requires reading it 

from the begininng and processing each record. Records are used to describe symbols and sections. 

Relocations may be associated with sections or may be specified by other records. IEEE-695 and 

Mach-O are record oriented object file formats used today. 



In a section oriented object file format the file header describes a section table with a specified 

number of sections. Symbols may appear in a separate part of the object file described by the file 

header, or they may appear in a special section. Relocations may be attached to sections, or they 

may appear in separate sections. The object file may be read by reading the section table, and then 

reading specific sections directly. ELF, COFF, PE, and a.out are section oriented object file formats. 

Every object file format needs to be able to represent debugging information. Debugging 

informations is generated by the compiler and read by the debugger. In general the linker can just 

treat it like any other type of data. However, in practice the debugging information for a program 

can be larger than the actual program itself. The linker can use various techniques to reduce the 

amount of debugging information, thus reducing the size of the executable. This can speed up the 

link, but requires the linker to understand the debugging information. 

The a.out object file format stores debugging information using special strings in the symbol table, 

known as stabs. These special strings are simply the names of symbols with a special type. This 

technique is also used by some variants of ECOFF, and by older versions of Mach-O. 

The COFF object file format stores debugging information using special fields in the symbol table. 

This type information is limited, and is completely inadequate for C++. A common technique to 

work around these limitations is to embed stabs strings in a COFF section. 

The ELF object file format stores debugging information in sections with special names. The 

debugging information can be stabs strings or the DWARF debugging format. 

More next week.  

Linkers part 4 
August 27, 2007 at 10:47 pm · Filed under Programming  

Shared Libraries 

We’ve talked a bit about what object files and executables look like, so what do shared libraries look 

like? I’m going to focus on ELF shared libraries as used in SVR4 (and GNU/Linux, etc.), as they are 

the most flexible shared library implementation and the one I know best. 

Windows shared libraries, known as DLLs, are less flexible in that you have to compile code 

differently depending on whether it will go into a shared library or not. You also have to express 
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symbol visibility in the source code. This is not inherently bad, and indeed ELF has picked up some 

of these ideas over time, but the ELF format makes more decisions at link time and is thus more 

powerful. 

When the program linker creates a shared library, it does not yet know which virtual address that 

shared library will run at. In fact, in different processes, the same shared library will run at different 

address, depending on the decisions made by the dynamic linker. This means that shared library 

code must be position independent. More precisely, it must be position independent after the 

dynamic linker has finished loading it. It is always possible for the dynamic linker to convert any 

piece of code to run at any virtula address, given sufficient relocation information. However, 

performing the reloc computations must be done every time the program starts, implying that it will 

start more slowly. Therefore, any shared library system seeks to generate position independent code 

which requires a minimal number of relocations to be applied at runtime, while still running at close 

to the runtime efficiency of position dependent code. 

An additional complexity is that ELF shared libraries were designed to be roughly equivalent to 

ordinary archives. This means that by default the main executable may override symbols in the 

shared library, such that references in the shared library will call the definition in the executable, 

even if the shared library also defines that same symbol. For example, an executable may define its 

own version of malloc. The C library also defines malloc, and the C library contains code which 

calls malloc. If the executable defines malloc itself, it will override the function in the C library. 

When some other function in the C library calls malloc, it will call the definition in the executable, 

not the definition in the C library. 

There are thus different requirements pulling in different directions for any specific ELF 

implementation. The right implementation choices will depend on the characteristics of the 

processor. That said, most, but not all, processors make fairly similar decisions. I will describe the 

common case here. An example of a processor which uses the common case is the i386; an example 

of a processor which make some different decisions is the PowerPC. 

In the common case, code may be compiled in two different modes. By default, code is position 

dependent. Putting position dependent code into a shared library will cause the program linker to 

generate a lot of relocation information, and cause the dynamic linker to do a lot of processing at 

runtime. Code may also be compiled in position independent mode, typically with the -fpic option. 

Position independent code is slightly slower when it calls a non-static function or refers to a global 



or static variable. However, it requires much less relocation information, and thus the dynamic linker 

will start the program faster. 

Position independent code will call non-static functions via the Procedure Linkage Table or PLT. This 

PLT does not exist in .o files. In a .o file, use of the PLT is indicated by a special relocation. When the 

program linker processes such a relocation, it will create an entry in the PLT. It will adjust the 

instruction such that it becomes a PC-relative call to the PLT entry. PC-relative calls are inherently 

position independent and thus do not require a relocation entry themselves. The program linker will 

create a relocation for the PLT entry which tells the dynamic linker which symbol is associated with 

that entry. This process reduces the number of dynamic relocations in the shared library from one 

per function call to one per function called. 

Further, PLT entries are normally relocated lazily by the dynamic linker. On most ELF systems this 

laziness may be overridden by setting the LD_BIND_NOW environment variable when running the 

program. However, by default, the dynamic linker will not actually apply a relocation to the PLT until 

some code actually calls the function in question. This also speeds up startup time, in that many 

invocations of a program will not call every possible function. This is particularly true when 

considering the shared C library, which has many more function calls than any typical program will 

execute. 

In order to make this work, the program linker initializes the PLT entries to load an index into some 

register or push it on the stack, and then to branch to common code. The common code calls back 

into the dynamic linker, which uses the index to find the appropriate PLT relocation, and uses that to 

find the function being called. The dynamic linker then initializes the PLT entry with the address of 

the function, and then jumps to the code of the function. The next time the function is called, the 

PLT entry will branch directly to the function. 

Before giving an example, I will talk about the other major data structure in position independent 

code, the Global Offset Table or GOT. This is used for global and static variables. For every reference 

to a global variable from position independent code, the compiler will generate a load from the GOT 

to get the address of the variable, followed by a second load to get the actual value of the variable. 

The address of the GOT will normally be held in a register, permitting efficient access. Like the PLT, 

the GOT does not exist in a .o file, but is created by the program linker. The program linker will 

create the dynamic relocations which the dynamic linker will use to initialize the GOT at runtime. 

Unlike the PLT, the dynamic linker always fully initializes the GOT when the program starts. 



For example, on the i386, the address of the GOT is held in the register %ebx. This register is 

initialized at the entry to each function in position independent code. The initialization sequence 

varies from one compiler to another, but typically looks something like this: 

 

call __i686.get_pc_thunk.bx 

add $offset,%ebx 

The function __i686.get_pc_thunk.bx simply looks like this: 

 

mov (%esp),%ebx 

ret 

This sequence of instructions uses a position independent sequence to get the address at which it is 

running. Then is uses an offset to get the address of the GOT. Note that this requires that the GOT 

always be a fixed offset from the code, regardless of where the shared library is loaded. That is, the 

dynamic linker must load the shared library as a fixed unit; it may not load different parts at varying 

addresses. 

Global and static variables are now read or written by first loading the address via a fixed offset from 

%ebx. The program linker will create dynamic relocations for each entry in the GOT, telling the 

dynamic linker how to initialize the entry. These relocations are of type GLOB_DAT. 

For function calls, the program linker will set up a PLT entry to look like this: 

 

jmp *offset(%ebx) 

pushl #index 

jmp first_plt_entry 

The program linker will allocate an entry in the GOT for each entry in the PLT. It will create a dynamic 

relocation for the GOT entry of type JMP_SLOT. It will initialize the GOT entry to the base address of 

the shared library plus the address of the second instruction in the code sequence above. When the 

dynamic linker does the initial lazy binding on a JMP_SLOT reloc, it will simply add the difference 

between the shared library load address and the shared library base address to the GOT entry. The 



effect is that the first jmp instruction will jump to the second instruction, which will push the index 

entry and branch to the first PLT entry. The first PLT entry is special, and looks like this: 

 

pushl 4(%ebx) 

jmp *8(%ebx) 

This references the second and third entries in the GOT. The dynamic linker will initialize them to 

have appropriate values for a callback into the dynamic linker itself. The dynamic linker will use the 

index pushed by the first code sequence to find the JMP_SLOT relocation. When the dynamic linker 

determines the function to be called, it will store the address of the function into the GOT entry 

references by the first code sequence. Thus, the next time the function is called, the jmp instruction 

will branch directly to the right code. 

That was a fast pass over a lot of details, but I hope that it conveys the main idea. It means that for 

position independent code on the i386, every call to a global function requires one extra instruction 

after the first time it is called. Every reference to a global or static variable requires one extra 

instruction. Almost every function uses four extra instructions when it starts to initialize %ebx (leaf 

functions which do not refer to any global variables do not need to initialize %ebx). This all has some 

negative impact on the program cache. This is the runtime performance penalty paid to let the 

dynamic linker start the program quickly. 

On other processors, the details are naturally different. However, the general flavour is similar: 

position independent code in a shared library starts faster and runs slightly slower. 

More tomorrow.  

Linkers part 5 
August 28, 2007 at 11:24 pm · Filed under Programming  

Shared Libraries Redux 

Yesterday I talked about how shared libraries work. I realized that I should say something about how 

linkers implement shared libraries. This discussion will again be ELF specific. 

When the program linker puts position dependent code into a shared library, it has to copy more of 

the relocations from the object file into the shared library. They will become dynamic relocations 
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computed by the dynamic linker at runtime. Some relocations do not have to be copied; for example, 

a PC relative relocation to a symbol which is local to shared library can be fully resolved by the 

program linker, and does not require a dynamic reloc. However, note that a PC relative relocation to 

a global symbol does require a dynamic relocation; otherwise, the main executable would not be 

able to override the symbol. Some relocations have to exist in the shared library, but do not need to 

be actual copies of the relocations in the object file; for example, a relocation which computes the 

absolute address of symbol which is local to the shared library can often be replaced with a 

RELATIVE reloc, which simply directs the dynamic linker to add the difference between the shared 

library’s load address and its base address. The advantage of using a RELATIVE reloc is that the 

dynamic linker can compute it quickly at runtime, because it does not require determining the value 

of a symbol. 

For position independent code, the program linker has a harder job. The compiler and assembler will 

cooperate to generate spcial relocs for position independent code. Although details differ among 

processors, there will typically be a PLT reloc and a GOT reloc. These relocs will direct the program 

linker to add an entry to the PLT or the GOT, as well as performing some computation. For example, 

on the i386 a function call in position independent code will generate a R_386_PLT32 reloc. This 

reloc will refer to a symbol as usual. It will direct the program linker to add a PLT entry for that 

symbol, if one does not already exist. The computation of the reloc is then a PC-relative reference to 

the PLT entry. (The 32 in the name of the reloc refers to the size of the reference, which is 32 bits). 

Yesterday I described how on the i386 every PLT entry also has a corresponding GOT entry, so the 

R_386_PLT32 reloc actually directs the program linker to create both a PLT entry and a GOT entry. 

When the program linker creates an entry in the PLT or the GOT, it must also generate a dynamic 

reloc to tell the dynamic linker about the entry. This will typically be a JMP_SLOT or GLOB_DAT 

relocation. 

This all means that the program linker must keep track of the PLT entry and the GOT entry for each 

symbol. Initially, of course, there will be no such entries. When the linker sees a PLT or GOT reloc, it 

must check whether the symbol referenced by the reloc already has a PLT or GOT entry, and create 

one if it does not. Note that it is possible for a single symbol to have both a PLT entry and a GOT 

entry; this will happen for position independent code which both calls a function and also takes its 

address. 



The dynamic linker’s job for the PLT and GOT tables is to simply compute the JMP_SLOT and 

GLOB_DAT relocs at runtime. The main complexity here is the lazy evaluation of PLT entries which I 

described yesterday. 

The fact that C permits taking the address of a function introduces an interesting wrinkle. In C you 

are permitted to take the address of a function, and you are permitted to compare that address to 

another function address. The problem is that if you take the address of a function in a shared 

library, the natural result would be to get the address of the PLT entry. After all, that is address to 

which a call to the function will jump. However, each shared library has its own PLT, and thus the 

address of a particular function would differ in each shared library. That means that comparisons of 

function pointers generated in different shraed libraries may be different when they should be the 

same. This is not a purely hypothetical problem; when I did a port which got it wrong, before I fixed 

the bug I saw failures in the Tcl shared library when it compared function pointers. 

The fix for this bug on most processors is a special marking for a symbol which has a PLT entry but 

is not defined. Typically the symbol will be marked as undefined, but with a non-zero value–the 

value will be set to the address of the PLT entry. When the dynamic linker is searching for the value 

of a symbol to use for a reloc other than a JMP_SLOT reloc, if it finds such a specially marked 

symbol, it will use the non-zero value. This will ensure that all references to the symbol which are 

not function calls will use the same value. To make this work, the compiler and assembler must 

make sure that any reference to a function which does not involve calling it will not carry a standard 

PLT reloc. This special handling of function addresses needs to be implemented in both the program 

linker and the dynamic linker. 

ELF Symbols 

OK, enough about shared libraries. Let’s go over ELF symbols in more detail. I’m not going to lay out 

the exact data structures–go to the ELF ABI for that. I’m going to take about the different fields and 

what they mean. Many of the different types of ELF symbols are also used by other object file 

formats, but I won’t cover that. 

An entry in an ELF symbol table has eight pieces of information: a name, a value, a size, a section, a 

binding, a type, a visibility, and undefined additional information (currently there are six undefined 

bits, though more may be added). An ELF symbol defined in a shared object may also have an 

associated version name. 

The name is obvious. 



For an ordinary defined symbol, the section is some section in the file (specifically, the symbol table 

entry holds an index into the section table). For an object file the value is relative to the start of the 

section. For an executable the value is an absolute address. For a shared library the value is relative 

to the base address. 

For an undefined reference symbol, the section index is the special value SHN_UNDEF which has the 

value 0. A section index of SHN_ABS (0xfff1) indicates that the value of the symbol is an absolute 

value, not relative to any section. 

A section index of SHN_COMMON (0xfff2) indicates a common symbol. Common symbols were 

invented to handle Fortran common blocks, and they are also often used for uninitialized global 

variables in C. A common symbol has unusual semantics. Common symbols have a value of zero, but 

set the size field to the desired size. If one object file has a common symbol and another has a 

definition, the common symbol is treated as an undefined reference. If there is no definition for a 

common symbol, the program linker acts as though it saw a definition initialized to zero of the 

appropriate size. Two object files may have common symbols of different sizes, in which case the 

program linker will use the largest size. Implementing common symbol semantics across shared 

libraries is a touchy subject, somewhat helped by the recent introduction of a type for common 

symbols as well as a special section index (see the discussion of symbol types below). 

The size of an ELF symbol, other than a common symbol, is the size of the variable or function. This 

is mainly used for debugging purposes. 

The binding of an elf symbol is global, local, or weak. A global symbol is globally visible. A local 

symbol is only locally visible (e.g., a static function). Weak symbols come in two flavors. A weak 

undefined reference is like an ordinary undefined reference, except that it is not an error if a 

relocation refers to a weak undefined reference symbol which has no defining symbol. Instead, the 

relocation is computed as though the symbol had the value zero. 

A weak defined symbol is permitted to be linked with a non-weak defined symbol of the same name 

without causing a multiple definition error. Historically there are two ways for the program linker to 

handle a weak defined symbol. On SVR4 if the program linker sees a weak defined symbol followed 

by a non-weak defined symbol with the same name, it will issue a multiple definition error. However, 

a non-weak defined symbol followed by a weak defined symbol will not cause an error. On Solaris, a 

weak defined symbol followed by a non-weak defined symbol is handled by causing all references to 

attach to the non-weak defined symbol, with no error. This difference in behaviour is due to an 



ambiguity in the ELF ABI which was read differently by different people. The GNU linker follows the 

Solaris behaviour. 

The type of an ELF symbol is one of the following: 

• STT_NOTYPE: no particular type.  

• STT_OBJECT: a data object, such as a variable.  

• STT_FUNC: a function  

• STT_SECTION: a local symbol associated with a section. This type of symbol is used to reduce 

the number of local symbols required, by changing all relocations against local symbols in a 

specific section to use the STT_SECTION symbol instead.  

• STT_FILE: a special symbol whose name is the name of the source file which produced the 

object file.  

• STT_COMMON: a common symbol. This is the same as setting the section index to SHN_COMMON, 

except in a shared object. The program linker will normally have allocated space for the 

common symbol in the shared object, so it will have a real section index. The STT_COMMON type 

tells the dynamic linker that although the symbol has a regular definition, it is a common 

symbol.  

• STT_TLS: a symbol in the Thread Local Storage area. I will describe this in more detail some 

other day.  

ELF symbol visibility was invented to provide more control over which symbols were accessible 

outside a shared library. The basic idea is that a symbol may be global within a shared library, but 

local outside the shared library. 

• STV_DEFAULT: the usual visibility rules apply: global symbols are visible everywhere.  

• STV_INTERNAL: the symbol is not accessible outside the current executable or shared library.  

• STV_HIDDEN: the symbol is not visible outside the current executable or shared library, but it 

may be accessed indirectly, probably because some code took its address.  

• STV_PROTECTED: the symbol is visible outside the current executable or shared object, but it 

may not be overridden. That is, if a protected symbol in a shared library is referenced by other 

code in the shared library, that other code will always reference the symbol in the shared 

library, even if the executable defines a symbol with the same name.  

I’ll described symbol versions later. 

More tomorrow.  
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So many things to talk about. Let’s go back and cover relocations in some more detail, with some 

examples. 

Relocations 

As I said back in part 2, a relocation is a computation to perform on the contents. And as I said 

yesterday, a relocation can also direct the linker to take other actions, like creating a PLT or GOT 

entry. Let’s take a closer look at the computation. 

In general a relocation has a type, a symbol, an offset into the contents, and an addend. 

From the linker’s point of view, the contents are simply an uninterpreted series of bytes. A relocation 

changes those bytes as necessary to produce the correct final executable. For example, consider the 

C code g = 0; where g is a global variable. On the i386, the compiler will turn this into an assembly 

language instruction, which will most likely be movl $0, g (for position dependent code–position 

independent code would loading the address of g from the GOT). Now, the g in the C code is a 

global variable, and we all more or less know what that means. The g in the assembly code is not 

that variable. It is a symbol which holds the address of that variable. 

The assembler does not know the address of the global variable g, which is another way of saying 

that the assembler does not know the value of the symbol g. It is the linker that is going to pick that 

address. So the assembler has to tell the linker that it needs to use the address of g in this 

instruction. The way the assembler does this is to create a relocation. We don’t use a separate 

relocation type for each instruction; instead, each processor will have a natural set of relocation 

types which are appropriate for the machine architecture. Each type of relocation expresses a 

specific computation. 

In the i386 case, the assembler will generate these bytes: 

c7 05 00 00 00 00 00 00 00 00  

The c7 05 are the instruction (movl constant to address). The first four 00 bytes are the 32-bit 

constant 0. The second four 00 bytes are the address. The assembler tells the linker to put the value 

of the symbol g into those four bytes by generating (in this case) a R_386_32 relocation. For this 

relocation the symbol will be g, the offset will be to the last four bytes of the instruction, the type 
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will be R_386_32, and the addend will be 0 (in the case of the i386 the addend is stored in the 

contents rather than in the relocation itself, but this is a detail). The type R_386_32 expresses a 

specific computation, which is: put the 32-bit sum of the value of the symbol and the addend into 

the offset. Since for the i386 the addend is stored in the contents, this can also be expressed as: add 

the value of the symbol to the 32-bit field at the offset. When the linker performs this computation, 

the address in the instruction will be the address of the global variable g. Regardless of the details, 

the important point to note is that the relocation adjusts the contents by applying a specific 

computation selected by the type. 

An example of a simple case which does use an addend would be 

 

char a[10]; // A global array. 

char* p = &a[1]; // In a function. 

The assignment to p will wind up requiring a relocation for the symbol a. Here the addend will be 1, 

so that the resulting instruction references a + 1 rather than a + 0. 

To point out how relocations are processor dependent, let’s consider g = 0; on a RISC processor: 

the PowerPC (in 32-bit mode). In this case, multiple assembly language instructions are required: 

 

li 1,0 // Set register 1 to 0 

lis 9,g@ha // Load high-adjusted part of g into register 9 

stw 1,g@l(9) // Store register 1 to address in register 9 plus low adjusted 

part g 

The lis instruction loads a value into the upper 16 bits of register 9, setting the lower 16 bits to 

zero. The stw instruction adds a signed 16 bit value to register 9 to form an address, and then 

stores the value of register 1 at that address. The @hapart of the operand directs the assembler to 

generate a R_PPC_ADDR16_HA reloc. The @l produces a R_PPC_ADDR16_LO reloc. The goal of these 

relocs is to compute the value of the symbol g and use it as the store address. 

That is enough information to determine the computations performed by these relocs. The 

R_PPC_ADDR16_HA reloc computes (SYMBOL >> 16) + ((SYMBOL & 0x8000) ? 1 : 0). The 

R_PPC_ADDR16_LO computes SYMBOL & 0xffff. The extra computation for R_PPC_ADDR16_HA is 

because the stw instruction adds the signed 16-bit value, which means that if the low 16 bits 



appears negative we have to adjust the high 16 bits accordingly. The offsets of the relocations are 

such that the 16-bit resulting values are stored into the appropriate parts of the machine 

instructions. 

The specific examples of relocations I’ve discussed here are ELF specific, but the same sorts of 

relocations occur for any object file format. 

The examples I’ve shown are for relocations which appear in an object file. As discussed in part 4, 

these types of relocations may also appear in a shared library, if they are copied there by the 

program linker. In ELF, there are also specific relocation types which never appear in object files but 

only appear in shared libraries or executables. These are the JMP_SLOT, GLOB_DAT, and RELATIVE 

relocations discussed earlier. Another type of relocation which only appears in an executable is a 

COPY relocation, which I will discuss later. 

Position Dependent Shared Libraries 

I realized that in part 4 I forgot to say one of the important reasons that ELF shared libraries use PLT 

and GOT tables. The idea of a shared library is to permit mapping the same shared library into 

different processes. This only works at maximum efficiency if the shared library code looks the same 

in each process. If it does not look the same, then each process will need its own private copy, and 

the savings in physical memory and sharing will be lost. 

As discussed in part 4, when the dynamic linker loads a shared library which contains position 

dependent code, it must apply a set of dynamic relocations. Those relocations will change the code 

in the shared library, and it will no longer be sharable. 

The advantage of the PLT and GOT is that they move the relocations elsewhere, to the PLT and GOT 

tables themselves. Those tables can then be put into a read-write part of the shared library. This 

part of the shared library will be much smaller than the code. The PLT and GOT tables will be 

different in each process using the shared library, but the code will be the same. 

I’ll be taking a vacation for the long weekend. My next post will most likely be on Tuesday.  
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As we’ve seen, what linkers do is basically quite simple, but the details can get complicated. The 

complexity is because smart programmers can see small optimizations to speed up their programs a 

little bit, and somtimes the only place those optimizations can be implemented is the linker. Each 

such optimizations makes the linker a little more complicated. At the same time, of course, the 

linker has to run as fast as possible, since nobody wants to sit around waiting for it to finish. Today 

I’ll talk about a classic small optimization implemented by the linker. 

Thread Local Storage 

I’ll assume you know what a thread is. It is often useful to have a global variable which can take on a 

different value in each thread (if you don’t see why this is useful, just trust me on this). That is, the 

variable is global to the program, but the specific value is local to the thread. If thread A sets the 

thread local variable to 1, and thread B then sets it to 2, then code running in thread A will continue 

to see the value 1 for the variable while code running in thread B sees the value 2. In Posix threads 

this type of variable can be created via pthread_key_create and accessed via 

pthread_getspecific and pthread_setspecific. 

Those functions work well enough, but making a function call for each access is awkward and 

inconvenient. It would be more useful if you could just declare a regular global variable and mark it 

as thread local. That is the idea of Thread Local Storage (TLS), which I believe was invented at Sun. 

On a system which supports TLS, any global (or static) variable may be annotated with __thread. 

The variable is then thread local. 

Clearly this requires support from the compiler. It also requires support from the program linker and 

the dynamic linker. For maximum efficiency–and why do this if you aren’t going to get maximum 

efficiency?–some kernel support is also needed. The design of TLS on ELF systems fully supports 

shared libraries, including having multiple shared libraries, and the executable itself, use the same 

name to refer to a single TLS variable. TLS variables can be initialized. Programs can take the address 

of a TLS variable, and pass the pointers between threads, so the address of a TLS variable is a 

dynamic value and must be globally unique. 

How is this all implemented? First step: define different storage models for TLS variables. 

• Global Dynamic: Fully general access to TLS variables from an executable or a shared object.  

• Local Dynamic: Permits access to a variable which is bound locally within the executable or 

shared object from which it is referenced. This is true for all static TLS variables, for example. It 

is also true for protected symbols–I described those back in part 5.  



• Initial Executable: Permits access to a variable which is known to be part of the TLS image of 

the executable. This is true for all TLS variables defined in the executable itself, and for all TLS 

variables in shared libraries explicitly linked with the executable. This is not true for accesses 

from a shared library, nor for accesses to TLS variables defined in shared libraries opened by 

dlopen.  

• Local Executable: Permits access to TLS variables defined in the executable itself.  

These storage models are defined in decreasing order of flexibility. Now, for efficiency and 

simplicity, a compiler which supports TLS will permit the developer to specify the appropriate TLS 

model to use (with gcc, this is done with the -ftls-model option, although the Global Dynamic 

and Local Dynamic models also require using -fpic). So, when compiling code which will be in an 

executable and never be in a shared library, the developer may choose to set the TLS storage model 

to Initial Executable. 

Of course, in practice, developers often do not know where code will be used. And developers may 

not be aware of the intricacies of TLS models. The program linker, on the other hand, knows whether 

it is creating an executable or a shared library, and it knows whether the TLS variable is defined 

locally. So the program linker gets the job of automatically optimizing references to TLS variables 

when possible. These references take the form of relocations, and the linker optimizes the 

references by changing the code in various ways. 

The program linker is also responsible for gathering all TLS variables together into a single TLS 

segment (I’ll talk more about segments later, for now think of them as a section). The dynamic linker 

has to group together the TLS segments of the executable and all included shared libraries, resolve 

the dynamic TLS relocations, and has to build TLS segments dynamically when dlopen is used. The 

kernel has to make it possible for access to the TLS segments be efficient. 

That was all pretty general. Let’s do an example, again for i386 ELF. There are three different 

implementations of i386 ELF TLS; I’m going to look at the gnu implementation. Consider this trivial 

code: 

 

__thread int i; 

int foo() { return i; } 

In global dynamic mode, this generates i386 assembler code like this: 



 

leal i@TLSGD(,%ebx,1), %eax 

call ___tls_get_addr@PLT 

movl (%eax), %eax 

Recall from part 4 that %ebx holds the address of the GOT table. The first instruction will have a 

R_386_TLS_GD relocation for the variable i; the relocation will apply to the offset of the leal 

instruction. When the program linker sees this relocation, it will create two consecutive entries in the 

GOT table for the TLS variable i. The first one will get a R_386_TLS_DTPMOD32 dynamic relocation, 

and the second will get a R_386_TLS_DTPOFF32 dynamic relocation. The dynamic linker will set the 

DTPMOD32 GOT entry to hold the module ID of the object which defines the variable. The module ID 

is an index within the dynamic linker’s tables which identifies the executable or a specific shared 

library. The dynamic linker will set the DTPOFF32 GOT entry to the offset within the TLS segment for 

that module. The __tls_get_addr function will use those values to compute the address (this 

function also takes care of lazy allocation of TLS variables, which is a further optimization specific to 

the dynamic linker). Note that __tls_get_addr is actually implemented by the dynamic linker itself; 

it follows that global dynamic TLS variables are not supported (and not necessary) in statically linked 

executables. 

At this point you are probably wondering what is so inefficient aboutpthread_getspecific. The 

real advantage of TLS shows when you see what the program linker can do. The leal; call 

sequence shown above is canonical: the compiler will always generate the same sequence to access a 

TLS variable in global dynamic mode. The program linker takes advantage of that fact. If the 

program linker sees that the code shown above is going into an executable, it knows that the access 

does not have to be treated as global dynamic; it can be treated as initial executable. The program 

linker will actually rewrite the code to look like this: 

 

movl %gs:0, %eax 

subl $i@GOTTPOFF(%ebx), %eax 

Here we see that the TLS system has coopted the %gs segment register, with cooperation from the 

operating system, to point to the TLS segment of the executable. For each processor which supports 

TLS, some such efficiency hack is made. Since the program linker is building the executable, it builds 

the TLS segment, and knows the offset of i in the segment. The GOTTPOFF is not a real relocation; it 

is created and then resolved within the program linker. It is, of course, the offset from the GOT table 



to the address of i in the TLS segment. The movl (%eax), %eax from the original sequence 

remains to actually load the value of the variable. 

Actually, that is what would happen if i were not defined in the executable itself. In the example I 

showed, i is defined in the executable, so the program linker can actually go from a global dynamic 

access all the way to a local executable access. That looks like this: 

 

movl %gs:0,%eax 

subl $i@TPOFF,%eax 

Here i@TPOFF is simply the known offset of i within the TLS segment. I’m not going to go into why 

this uses subl rather than addl; suffice it to say that this is another efficiency hack in the dynamic 

linker. 

If you followed all that, you’ll see that when an executable accesses a TLS variable which is defined in 

that executable, it requires two instructions to compute the address, typically followed by another 

one to actually load or store the value. That is significantly more efficient than calling 

pthread_getspecific. Admittedly, when a shared library accesses a TLS variable, the result is not 

much better than pthread_getspecific, but it shouldn’t be any worse, either. And the code using 

__thread is much easier to write and to read. 

That was a real whirlwind tour. There are three separate but related TLS implementations on i386 

(known as sun, gnu, and gnu2), and 23 different relocation types are defined. I’m certainly not going 

to try to describe all the details; I don’t know them all in any case. They all exist in the name of 

efficient access to the TLS variables for a given storage model. 

Is TLS worth the additional complexity in the program linker and the dynamic linker? Since those 

tools are used for every program, and since the C standard global variable errno in particular can be 

implemented using TLS, the answer is most likely yes.  
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Earlier I said that executable file formats were normally the same as object file formats. That is true 

for ELF, but with a twist. In ELF, object files are composed of sections: all the data in the file is 

accessed via the section table. Executables and shared libraries normally contain a section table, 

which is used by programs like nm. But the operating system and the dynamic linker do not use the 

section table. Instead, they use the segment table, which provides an alternative view of the file. 

All the contents of an ELF executable or shared library which are to be loaded into memory are 

contained within a segment (an object file does not have segments). A segment has a type, some 

flags, a file offset, a virtual address, a physical address, a file size, a memory size, and an alignment. 

The file offset points to a contiguous set of bytes which are the contents of the segment, the bytes 

to load into memory. When the operating system or the dynamic linker loads a file, it will do so by 

walking through the segments and loading them into memory (typically by using the mmap system 

call). All the information needed by the dynamic linker–the dynamic relocations, the dynamic symbol 

table, etc.–are accessed via information stored in special segments. 

Although an ELF executable or shared library does not, strictly speaking, require any sections, they 

normally do have them. The contents of a loadable section will fall entirely within a single segment. 

The program linker reads sections from the input object files. It sorts and concatenates them into 

sections in the output file. It maps all the loadable sections into segments in the output file. It lays 

out the section contents in the output file segments respecting alignment and access requirements, 

so that the segments may be mapped directly into memory. The sections are mapped to segments 

based on the access requirements: normally all the read-only sections are mapped to one segment 

and all the writable sections are mapped to another segment. The address of the latter segment will 

be set so that it starts on a separate page in memory, permitting mmap to set different permissions 

on the mapped pages. 

The segment flags are a bitmask which define access requirements. The defined flags are PF_R, 

PF_W, and PF_X, which mean, respectively, that the contents must be made readable, writable, or 

executable. 

The segment virtual address is the memory address at which the segment contents are loaded at 

runtime. The physical address is officially undefined, but is often used as the load address when 

using a system which does not use virtual memory. The file size is the size of the contents in the file. 

The memory size may be larger than the file size when the segment contains uninitialized data; the 

extra bytes will be filled with zeroes. The alignment of the segment is mainly informative, as the 

address is already specified. 



The ELF segment types are as follows: 

• PT_NULL: A null entry in the segment table, which is ignored.  

• PT_LOAD: A loadable entry in the segment table. The operating system or dynamic linker load 

all segments of this type. All other segments with contents will have their contents contained 

completely within a PT_LOAD segment.  

• PT_DYNAMIC: The dynamic segment. This points to a series of dynamic tags which the dynamic 

linker uses to find the dynamic symbol table, dynamic relocations, and other information that it 

needs.  

• PT_INTERP: The interpreter segment. This appears in an executable. The operating system 

uses it to find the name of the dynamic linker to run for the executable. Normally all 

executables will have the same interpreter name, but on some operating systems different 

interpreters are used in different emulation modes.  

• PT_NOTE: A note segment. This contains system dependent note information which may be 

used by the operating system or the dynamic linker. On GNU/Linux systems shared libraries 

often have a ABI tag note which may be used to specify the minimum version of the kernel 

which is required for the shared library. The dynamic linker uses this when selecting among 

different shared libraries.  

• PT_SHLIB: This is not used as far as I know.  

• PT_PHDR: This indicates the address and size of the segment table. This is not too useful in 

practice as you have to have already found the segment table before you can find this segment.  

• PT_TLS: The TLS segment. This holds the initial values for TLS variables.  

• PT_GNU_EH_FRAME (0x6474e550): A GNU extension used to hold a sorted table of unwind 

information. This table is built by the GNU program linker. It is used by gcc’s support library to 

quickly find the appropriate handler for an exception, without requiring exception frames to be 

registered when the program start.  

• PT_GNU_STACK (0x6474e551): A GNU extension used to indicate whether the stack should be 

executable. This segment has no contents. The dynamic linker sets the permission of the stack 

in memory to the permissions of this segment.  

• PT_GNU_RELRO (0x6474e552): A GNU extension which tells the dynamic linker to set the given 

address and size to be read-only after applying dynamic relocations. This is used for const 

variables which require dynamic relocations.  

ELF Sections 



Now that we’ve done segments, lets take a quick look at the details of ELF sections. ELF sections are 

more complicated than segments, in that there are more types of sections. Every ELF object file, and 

most ELF executables and shared libraries, have a table of sections. The first entry in the table, 

section 0, is always a null section. 

ELF sections have several fields. 

• Name.  

• Type. I discuss section types below.  

• Flags. I discuss section flags below.  

• Address. This is the address of the section. In an object file this is normally zero. In an 

executable or shared library it is the virtual address. Since executables are normally accessed 

via segments, this is essentially documentation.  

• File offset. This is the offset of the contents within the file.  

• Size. The size of the section.  

• Link. Depending on the section type, this may hold the index of another section in the section 

table.  

• Info. The meaning of this field depends on the section type.  

• Address alignment. This is the required alignment of the section. The program linker uses this 

when laying out the section in memory.  

• Entry size. For sections which hold an array of data, this is the size of one data element.  

These are the types of ELF sections which the program linker may see. 

• SHT_NULL: A null section. Sections with this type may be ignored.  

• SHT_PROGBITS: A section holding bits of the program. This is an ordinary section with 

contents.  

• SHT_SYMTAB: The symbol table. This section actually holds the symbol table itself. The section 

contents are an array of ELF symbol structures.  

• SHT_STRTAB: A string table. This type of section holds null-terminated strings. Sections of this 

type are used for the names of the symbols and the names of the sections themselves.  

• SHT_RELA: A relocation table. The link field holds the index of the section to which these 

relocations apply. These relocations include addends.  

• SHT_HASH: A hash table used by the dynamic linker to speed symbol lookup.  

• SHT_DYNAMIC: The dynamic tags used by the dynamic linker. Normally the PT_DYNAMIC 

segment and the SHT_DYNAMIC section will point to the same contents.  



• SHT_NOTE: A note section. This is used in system dependent ways. A loadable SHT_NOTE 

section will become a PT_NOTE segment.  

• SHT_NOBITS: A section which takes up memory space but has no associated contents. This is 

used for zero-initialized data.  

• SHT_REL: A relocation table, like SHT_RELA but the relocations have no addends.  

• SHT_SHLIB: This is not used as far as I know.  

• SHT_DYNSYM: The dynamic symbol table. Normally the DT_SYMTAB dynamic tag will point to the 

same contents as this section (I haven’t discussed dynamic tags yet, though).  

• SHT_INIT_ARRAY: This section holds a table of function addresses which should each be called 

at program startup time, or, for a shared library, when the library is opened by dlopen.  

• SHT_FINI_ARRAY: Like SHT_INIT_ARRAY, but called at program exit time or dlclose time.  

• SHT_PREINIT_ARRAY: Like SHT_INIT_ARRAY, but called before any shared libraries are 

initialized. Normally shared libraries initializers are run before the executable initializers. This 

section type may only be linked into an executable, not into a shared library.  

• SHT_GROUP: This is used to group related sections together, so that the program linker may 

discard them as a unit when appropriate. Sections of this type may only appear in object files. 

The contents of this type of section are a flag word followed by a series of section indices.  

• SHT_SYMTAB_SHNDX: ELF symbol table entries only provide a 16-bit field for the section index. 

For a file with more than 65536 sections, a section of this type is created. It holds one 32-bit 

word for each symbol. If a symbol’s section index is SHN_XINDEX, the real section index may 

be found by looking in the SHT_SYMTAB_SHNDX section.  

• SHT_GNU_LIBLIST (0x6ffffff7): A GNU extension used by the prelinker to hold a list of 

libraries found by the prelinker.  

• SHT_GNU_verdef (0x6ffffffd): A Sun and GNU extension used to hold version definitions 

(I’ll take about symbol versions at some point).  

• SHT_GNU_verneed (0x6ffffffe): A Sun and GNU extension used to hold versions required 

from other shared libraries.  

• SHT_GNU_versym (0x6fffffff): A Sun and GNU extension used to hold the versions for each 

symbol.  

These are the types of section flags. 

• SHF_WRITE: Section contains writable data.  

• SHF_ALLOC: Section contains data which should be part of the loaded program image. For 

example, this would normally be set for a SHT_PROGBITS section and not set for a 

SHT_SYMTAB section.  



• SHF_EXECINSTR: Section contains executable instructions.  

• SHF_MERGE: Section contains constants which the program linker may merge together to save 

space. The compiler can use this type of section for read-only data whose address is 

unimportant.  

• SHF_STRINGS: In conjunction with SHF_MERGE, this means that the section holds null 

terminated string constants which may be merged.  

• SHF_INFO_LINK: This flag indicates that the info field in the section holds a section index.  

• SHF_LINK_ORDER: This flag tells the program linker that when it combines sections, this 

section must appear in the same relative order as the section in the link field. This can be used 

to ensure that address tables are built in the expected order.  

• SHF_OS_NONCONFORMING: If the program linker sees a section with this flag, and does not 

understand the type or all other flags, then it must issue an error.  

• SHF_GROUP: This section appears in a group (see SHT_GROUP, above).  

• SHF_TLS: This section holds TLS data.  
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Symbol Versions 

A shared library provides an API. Since executables are built with a specific set of header files and 

linked against a specific instance of the shared library, it also provides an ABI. It is desirable to be 

able to update the shared library independently of the executable. This permits fixing bugs in the 

shared library, and it also permits the shared library and the executable to be distributed separately. 

Sometimes an update to the shared library requires changing the API, and sometimes changing the 

API requires changing the ABI. When the ABI of a shared library changes, it is no longer possible to 

update the shared library without updating the executable. This is unfortunate. 

For example, consider the system C library and the stat function. When file systems were upgraded 

to support 64-bit file offsets, it became necessary to change the type of some of the fields in the 

stat struct. This is a change in the ABI of stat. New versions of the system library should provide a 

stat which returns 64-bit values. But old existing executables call stat expecting 32-bit values. 

This could be addressed by using complicated macros in the system header files. But there is a 

better way. 

The better way is symbol versions, which were introduced at Sun and extended by the GNU tools. 

Every shared library may define a set of symbol versions, and assign specific versions to each 
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defined symbol. The versions and symbol assignments are done by a script passed to the program 

linker when creating the shared library. 

When an executable or shared library A is linked against another shared library B, and A refers to a 

symbol S defined in B with a specific version, the undefined dynamic symbol reference S in A is given 

the version of the symbol S in B. When the dynamic linker sees that A refers to a specific version of S, 

it will link it to that specific version in B. If B later introduces a new version of S, this will not affect A, 

as long as B continues to provide the old version of S. 

For example, when stat changes, the C library would provide two versions of stat, one with the old 

version (e.g., LIBC_1.0), and one with the new version (LIBC_2.0). The new version of stat would be 

marked as the default–the program linker would use it to satisfy references to stat in object files. 

Executables linked against the old version would require the LIBC_1.0 version of stat, and would 

therefore continue to work. Note that it is even possible for both versions of stat to be used in a 

single program, accessed from different shared libraries. 

As you can see, the version effectively is part of the name of the symbol. The biggest difference is 

that a shared library can define a specific version which is used to satisfy an unversioned reference. 

Versions can also be used in an object file (this is a GNU extension to the original Sun 

implementation). This is useful for specifying versions without requiring a version script. When a 

symbol name containts the @ character, the string before the @ is the name of the symbol, and the 

string after the @ is the version. If there are two consecutive @ characters, then this is the default 

version. 

Relaxation 

Generally the program linker does not change the contents other than applying relocations. 

However, there are some optimizations which the program linker can perform at link time. One of 

them is relaxation. 

Relaxation is inherently processor specific. It consists of optimizing code sequences which can 

become smaller or more efficient when final addresses are known. The most common type of 

relaxation is for call instructions. A processor like the m68k supports different PC relative call 

instructions: one with a 16-bit offset, and one with a 32-bit offset. When calling a function which is 

within range of the 16-bit offset, it is more efficient to use the shorter instruction. The optimization 

of shrinking these instructions at link time is known as relaxation. 



Relaxation is applied based on relocation entries. The linker looks for relocations which may be 

relaxed, and checks whether they are in range. If they are, the linker applies the relaxation, probably 

shrinking the size of the contents. The relaxation can normally only be done when the linker 

recognizes the instruction being relocated. Applying a relaxation may in turn bring other relocations 

within range, so relaxation is typically done in a loop until there are no more opportunities. 

When the linker relaxes a relocation in the middle of a contents, it may need to adjust any PC relative 

references which cross the point of the relaxation. Therefore, the assembler needs to generate 

relocation entries for all PC relative references. When not relaxing, these relocations may not be 

required, as a PC relative reference within a single contents will be valid whereever the contents 

winds up. When relaxing, though, the linker needs to look through all the other relocations that 

apply to the contents, and adjust PC relatives one where appropriate. This adjustment will simply 

consist of recomputing the PC relative offset. 

Of course it is also possible to apply relaxations which do not change the size of the contents. For 

example, on the MIPS the position independent calling sequence is normally to load the address of 

the function into the $25 register and then to do an indirect call through the register. When the 

target of the call is within the 18-bit range of the branch-and-call instruction, it is normally more 

efficient to use branch-and-call, since then the processor does not have to wait for the load of $25 

to complete before starting the call. This relaxation changes the instruction sequence without 

changing the size. 

More tomorrow. I apologize for the haphazard arrangement of these linker notes. I’m just writing 

about ideas as I think of them, rather than being organized about that. If I do collect these notes into 

an essay, I’ll try to make them more structured.  

Linkers part 10 
September 6, 2007 at 11:33 pm · Filed under Programming  

Parallel Linking 

It is possible to parallelize the linking process somewhat. This can help hide I/O latency and can take 

better advantage of modern multi-core systems. My intention with gold is to use these ideas to 

speed up the linking process. 

The first area which can be parallelized is reading the symbols and relocation entries of all the input 

files. The symbols must be processed in order; otherwise, it will be difficult for the linker to resolve 

http://www.airs.com/blog/archives/47
http://www.airs.com/blog/archives/category/programming/


multiple definitions correctly. In particular all the symbols which are used before an archive must be 

fully processed before the archive is processed, or the linker won’t know which members of the 

archive to include in the link (I guess I haven’t talked about archives yet). However, despite these 

ordering requirements, it can be beneficial to do the actual I/O in parallel. 

After all the symbols and relocations have been read, the linker must complete the layout of all the 

input contents. Most of this can not be done in parallel, as setting the location of one type of 

contents requires knowing the size of all the preceding types of contents. While doing the layout, the 

linker can determine the final location in the output file of all the data which needs to be written out. 

After layout is complete, the process of reading the contents, applying relocations, and writing the 

contents to the output file can be fully parallelized. Each input file can be processed separately. 

Since the final size of the output file is known after the layout phase, it is possible to use mmap for 

the output file. When not doing relaxation, it is then possible to read the input contents directly into 

place in the output file, and to relocation them in place. This reduces the number of system calls 

required, and ideally will permit the operating system to do optimal disk I/O for the output file. 

Just a short entry tonight. More tomorrow.  

Linkers part 11 
September 7, 2007 at 11:09 pm · Filed under Programming  

Archives 

Archives are a traditional Unix package format. They are created by the ar program, and they are 

normally named with a .a extension. Archives are passed to a Unix linker with the -l option. 

Although the ar program is capable of creating an archive from any type of file, it is normally used 

to put object files into an archive. When it is used in this way, it creates a symbol table for the 

archive. The symbol table lists all the symbols defined by any object file in the archive, and for each 

symbol indicates which object file defines it. Originally the symbol table was created by the ranlib 

program, but these days it is always created by ar by default (despite this, many Makefiles continue 

to run ranlib unnecessarily). 

When the linker sees an archive, it looks at the archive’s symbol table. For each symbol the linker 

checks whether it has seen an undefined reference to that symbol without seeing a definition. If that 
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is the case, it pulls the object file out of the archive and includes it in the link. In other words, the 

linker pulls in all the object files which defines symbols which are referenced but not yet defined. 

This operation repeats until no more symbols can be defined by the archive. This permits object files 

in an archive to refer to symbols defined by other object files in the same archive, without worrying 

about the order in which they appear. 

Note that the linker considers an archive in its position on the command line relative to other object 

files and archives. If an object file appears after an archive on the command line, that archive will not 

be used to defined symbols referenced by the object file. 

In general the linker will not include archives if they provide a definition for a common symbol. You 

will recall that if the linker sees a common symbol followed by a defined symbol with the same 

name, it will treat the common symbol as an undefined reference. That will only happen if there is 

some other reason to include the defined symbol in the link; the defined symbol will not be pulled in 

from the archive. 

There was an interesting twist for common symbols in archives on old a.out-based SunOS systems. If 

the linker saw a common symbol, and then saw a common symbol in an archive, it would not include 

the object file from the archive, but it would change the size of the common symbol to the size in 

the archive if that were larger than the current size. The C library relied on this behaviour when 

implementing the stdin variable. 

My next posting should be on Monday.  

Linkers part 12 
September 13, 2007 at 10:47 pm · Filed under Programming  

I apologize for the pause in posts. We moved over the weekend. Last Friday at&t told me that the 

new DSL was working at our new house. However, it did not actually start working outside the house 

until Wednesday. Then a problem with the internal wiring meant that it was not working inside the 

house until today. I am now finally back online at home. 

Symbol Resolution 
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I find that symbol resolution is one of the trickier aspects of a linker. Symbol resolution is what the 

linker does the second and subsequent times that it sees a particular symbol. I’ve already touched 

on the topic in a few previous entries, but let’s look at it in a bit more depth. 

Some symbols are local to a specific object files. We can ignore these for the purposes of symbol 

resolution, as by definition the linker will never see them more than once. In ELF these are the 

symbols with a binding of STB_LOCAL. 

In general, symbols are resolved by name: every symbol with the same name is the same entity. 

We’ve already seen a few exceptions to that general rule. A symbol can have a version: two symbols 

with the same name but different versions are different symbols. A symbol can have non-default 

visibility: a symbol with hidden visibility in one shared library is not the same as a symbol with the 

same name in a different shared library. 

The characteristics of a symbol which matter for resolution are: 

• The symbol name  

• The symbol version.  

• Whether the symbol is the default version or not.  

• Whether the symbol is a definition or a reference or a common symbol.  

• The symbol visibility.  

• Whether the symbol is weak or strong (i.e., non-weak).  

• Whether the symbol is defined in a regular object file being included in the output, or in a 

shared library.  

• Whether the symbol is thread local.  

• Whether the symbol refers to a function or a variable.  

The goal of symbol resolution is to determine the final value of the symbol. After all symbols are 

resolved, we should know the specific object file or shared library which defines the symbol, and we 

should know the symbol’s type, size, etc. It is possible that some symbols will remain undefined 

after all the symbol tables have been read; in general this is only an error if some relocation refers to 

that symbol. 

At this point I’d like to present a simple algorithm for symbol resolution, but I don’t think I can. I’ll 

try to hit all the high points, though. Let’s assume that we have two symbols with the same name. 

Let’s call the symbol we saw first A and the new symbol B. (I’m going to ignore symbol visibility in 

the algorithm below; the effects of visibility should be obvious, I hope.) 



1. If A has a version:  

o If B has a version different from A, they are actually different symbols.  

o If B has the same version as A, they are the same symbol; carry on.  

o If B does not have a version, and A is the default version of the symbol, they are the same 

symbol; carry on.  

o Otherwise B is probably a different symbol. But note that if A and B are both undefined 

references, then it is possible that A refers to the default version of the symbol but we 

don’t yet know that. In that case, if B does not have a version, A and B really are the same 

symbol. We can’t tell until we see the actual definition.  

2. If A does not have a version:  

o If B does not have a version, they are the same symbol; carry on.  

o If B has a version, and it is the default version, they are the same symbol; carry on.  

o Otherwise, B is probably a different symbol, as above.  

3. If A is thread local and B is not, or vice-versa, then we have an error.  

4. If A is an undefined reference:  

o If B is an undefined reference, then we can complete the resolution, and more or less 

ignore B.  

o If B is a definition or a common symbol, then we can resolve A to B.  

5. If A is a strong definition in an object file:  

o If B is an undefined reference, then we resolve B to A.  

o If B is a strong definition in an object file, then we have a multiple definition error.  

o If B is a weak definition in an object file, then A overrides B. In effect, B is ignored.  

o If B is a common symbol, then we treat B as an undefined reference.  

o If B is a definition in a shared library, then A overrides B. The dynamic linker will change all 

references to B in the shared library to refer to A instead.  

6. If A is a weak definition in an object file, we act just like the strong definition case, with one 

exception: if B is a strong definition in an object file. In the original SVR4 linker, this case was 

treated as a multiple definition error. In the Solaris and GNU linkers, this case is handled by 

letting B override A.  

7. If A is a common symbol in an object file:  

o If B is a common symbol, we set the size of A to be the maximum of the size of A and the 

size of B, and then treat B as an undefined reference.  

o If B is a definition in a shared library with function type, then A overrides B (this oddball 

case is required to correctly handle some Unix system libraries).  

o Otherwise, we treat A as an undefined reference.  



8. If A is a definition in a shared library, then if B is a definition in a regular object (strong or 

weak), it overrides A. Otherwise we act as though A were defined in an object file.  

9. If A is a common symbol in a shared library, we have a funny case. Symbols in shared libraries 

must have addresses, so they can’t be common in the same sense as symbols in an object file. 

But ELF does permit symbols in a shared library to have the type STT_COMMON (this is a 

relatively recent addition). For purposes of symbol resolution, if A is a common symbol in a 

shared library, we still treat it as a definition, unless B is also a common symbol. In the latter 

case, B overrides A, and the size of B is set to the maximum of the size of A and the size of B.  

I hope I got all that right. 

More tomorrow, assuming the Internet connection holds up.  

Linkers part 13 
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Symbol Versions Redux 

I’ve talked about symbol versions from the linker’s point of view. I think it’s worth discussing them a 

bit from the user’s point of view. 

As I’ve discussed before, symbol versions are an ELF extension designed to solve a specific problem: 

making it possible to upgrade a shared library without changing existing executables. That is, they 

provide backward compatibility for shared libraries. There are a number of related problems which 

symbol versions do not solve. They do not provide forward compatibility for shared libraries: if you 

upgrade your executable, you may need to upgrade your shared library also (it would be nice to have 

a feature to build your executable against an older version of the shared library, but that is difficult 

to implement in practice). They only work at the shared library interface: they do not help with a 

change to the ABI of a system call, which is at the kernel interface. They do not help with the 

problem of sharing incompatible versions of a shared library, as may happen when a complex 

application is built out of several different existing shared libraries which have incompatible 

dependencies. 

Despite these limitations, shared library backward compatibility is an important issue. Using symbol 

versions to ensure backward compatibility requires a careful and rigorous approach. You must start 

by applying a version to every symbol. If a symbol in the shared library does not have a version, then 

it is impossible to change it in a backward compatible fashion. Then you must pay close attention to 
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the ABI of every symbol. If the ABI of a symbol changes for any reason, you must provide a copy 

which implements the old ABI. That copy should be marked with the original version. The new 

symbol must be given a new version. 

The ABI of a symbol can change in a number of ways. Any change to the parameter types or the 

return type of a function is an ABI change. Any change in the type of a variable is an ABI change. If a 

parameter or a return type is a struct or class, then any change in the type of any field is an ABI 

change–i.e., if a field in a struct points to another struct, and that struct changes, the ABI has 

changed. If a function is defined to return an instance of an enum, and a new value is added to the 

enum, that is an ABI change. In other words, even minor changes can be ABI changes. The question 

you need to ask is: can existing code which has already been compiled continue to use the new 

symbol with no change? If the answer is no, you have an ABI change, and you must define a new 

symbol version. 

You must be very careful when writing the symbol implementing the old ABI, if you don’t just copy 

the existing code. You must be certain that it really does implement the old ABI. 

There are some special challenges when using C++. Adding a new virtual method to a class can be 

an ABI change for any function which uses that class. Providing the backward compatible version of 

the class in such a situation is very awkward–there is no natural way to specify the name and version 

to use for the virtual table or the RTTI information for the old version. 

Naturally, you must never delete any symbols. 

Getting all the details correct, and verifying that you got them correct, requires great attention to 

detail. Unfortunately, I don’t know of any tools to help people write correct version scripts, or to 

verify them. Still, if implemented correctly, the results are good: existing executables will continue to 

run. 

Static Linking vs. Dynamic Linking 

There is, of course, another way to ensure that existing executables will continue to run: link them 

statically, without using any shared libraries. That will limit their ABI issues to the kernel interface, 

which is normally significantly smaller than the library interface. 

There is a performance tradeoff with static linking. A statically linked program does not get the 

benefit of sharing libraries with other programs executing at the same time. On the other hand, a 



statically linked program does not have to pay the performance penalty of position independent 

code when executing within the library. 

Upgrading the shared library is only possible with dynamic linking. Such an upgrade can provide bug 

fixes and better performance. Also, the dynamic linker can select a version of the shared library 

appropriate for the specific platform, which can also help performance. 

Static linking permits more reliable testing of the program. You only need to worry about kernel 

changes, not about shared library changes. 

Some people argue that dynamic linking is always superior. I think there are benefits on both sides, 

and which choice is best depends on the specific circumstances. 

More on Monday. If you think I should write about any specific linker related topics which have not 

already been mentioned in the comments, please let me know.  

Linkers part 14 
September 17, 2007 at 10:01 pm · Filed under Programming  

Link Time Optimization 

I’ve already mentioned some optimizations which are peculiar to the linker: relaxation and garbage 

collection of unwanted sections. There is another class of optimizations which occur at link time, but 

are really related to the compiler. The general name for these optimizations is link time optimization 

or whole program optimization. 

The general idea is that the compiler optimization passes are run at link time. The advantage of 

running them at link time is that the compiler can then see the entire program. This permits the 

compiler to perform optimizations which can not be done when sources files are compiled 

separately. The most obvious such optimization is inlining functions across source files. Another is 

optimizing the calling sequence for simple functions–e.g., passing more parameters in registers, or 

knowing that the function will not clobber all registers; this can only be done when the compiler can 

see all callers of the function. Experience shows that these and other optimizations can bring 

significant performance benefits. 

Generally these optimizations are implemented by having the compiler write a version of its 

intermediate representation into the object file, or into some parallel file. The intermediate 
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representation will be the parsed version of the source file, and may already have had some local 

optimizations applied. Sometimes the object file contains only the compiler intermediate 

representation, sometimes it also contains the usual object code. In the former case link time 

optimization is required, in the latter case it is optional. 

I know of two typical ways to implement link time optimization. The first approach is for the 

compiler to provide a pre-linker. The pre-linker examines the object files looking for stored 

intermediate representation. When it finds some, it runs the link time optimization passes. The 

second approach is for the linker proper to call back into the compiler when it finds intermediate 

representation. This is generally done via some sort of plugin API. 

Although these optimizations happen at link time, they are not part of the linker proper, at least not 

as I defined it. When the compiler reads the stored intermediate representation, it will eventually 

generate an object file, one way or another. The linker proper will then process that object file as 

usual. These optimizations should be thought of as part of the compiler. 

Initialization Code 

C++ permits globals variables to have constructors and destructors. The global constructors must 

be run before main starts, and the global destructors must be run after exit is called. Making this 

work requires the compiler and the linker to cooperate. 

The a.out object file format is rarely used these days, but the GNU a.out linker has an interesting 

extension. In a.out symbols have a one byte type field. This encodes a bunch of debugging 

information, and also the section in which the symbol is defined. The a.out object file format only 

supports three sections–text, data, and bss. Four symbol types are defined as sets: text set, data set, 

bss set, and absolute set. A symbol with a set type is permitted to be defined multiple times. The 

GNU linker will not give a multiple definition error, but will instead build a table with all the values of 

the symbol. The table will start with one word holding the number of entries, and will end with a 

zero word. In the output file the set symbol will be defined as the address of the start of the table. 

For each C++ global constructor, the compiler would generate a symbol named __CTOR_LIST__ 

with the text set type. The value of the symbol in the object file would be the global constructor 

function. The linker would gather together all the __CTOR_LIST__ functions into a table. The 

startup code supplied by the compiler would walk down the __CTOR_LIST__ table and call each 

function. Global destructors were handled similarly, with the name __DTOR_LIST__. 



Anyhow, so much for a.out. In ELF, global constructors are handled in a fairly similar way, but 

without using magic symbol types. I’ll describe what gcc does. An object file which defines a global 

constructor will include a .ctors section. The compiler will arrange to link special object files at the 

very start and very end of the link. The one at the start of the link will define a symbol for the 

.ctors section; that symbol will wind up at the start of the section. The one at the end of the link 

will define a symbol for the end of the .ctors section. The compiler startup code will walk between 

the two symbols, calling the constructors. Global destructors work similarly, in a .dtors section. 

ELF shared libraries work similarly. When the dynamic linker loads a shared library, it will call the 

function at the DT_INIT tag if there is one. By convention the ELF program linker will set this to the 

function named _init, if there is one. Similarly the DT_FINI tag is called when a shared library is 

unloaded, and the program linker will set this to the function named _fini. 

As I mentioned earlier, three are also DT_INIT_ARRAY, DT_PREINIT_ARRAY, and DT_FINI_ARRAY 

tags, which are set based on the SHT_INIT_ARRAY, SHT_PREINIT_ARRAY, and SHT_FINI_ARRAY 

section types. This is a newer approach in ELF, and does not require relying on special symbol 

names. 

More tomorrow.  

Linkers part 15 
September 18, 2007 at 10:40 pm · Filed under Programming  

COMDAT sections 

In C++ there are several constructs which do not clearly live in a single place. Examples are inline 

functions defined in a header file, virtual tables, and typeinfo objects. There must be only a single 

instance of each of these constructs in the final linked program (actually we could probably get away 

with multiple copies of a virtual table, but the others must be unique since it is possible to take their 

address). Unfortunately, there is not necessarily a single object file in which they should be 

generated. These types of constructs are sometimes described as having vague linkage. 

Linkers implement these features by using COMDAT sections (there may be other approaches, but 

this is the only I know of). COMDAT sections are a special type of section. Each COMDAT section has 

a special string. When the linker sees multiple COMDAT sections with the same special string, it will 

only keep one of them. 
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For example, when the C++ compiler sees an inline function f1 defined in a header file, but the 

compiler is unable to inline the function in all uses (perhaps because something takes the address of 

the function), the compiler will emit f1 in a COMDAT section associated with the string f1. After the 

linker sees a COMDAT section f1, it will discard all subsequent f1 COMDAT sections. 

This obviously raises the possibility that there will be two entirely different inline functions named 

f1, defined in different header files. This would be an invalid C++ program, violating the One 

Definition Rule (often abbreviated ODR). Unfortunately, if no source file included both header files, 

the compiler would be unable to diagnose the error. And, unfortunately, the linker would simply 

discard the duplicate COMDAT sections, and would not notice the error either. This is an area where 

some improvements are needed (at least in the GNU tools; I don’t know whether any other tools 

diagnose this error correctly). 

The Microsoft PE object file format provides COMDAT sections. These sections can be marked so that 

duplicate COMDAT sections which do not have identical contents cause an error. That is not as 

helpful as it seems, as different compiler options may cause valid duplicates to have different 

contents. The string associated with a COMDAT section is stored in the symbol table. 

Before I learned about the Microsoft PE format, I introduced a different type of COMDAT sections into 

the GNU ELF linker, following a suggestion from Jason Merrill. Any section whose name starts with 

“.gnu.linkonce.” is a COMDAT section. The associated string is simply the section name itself. Thus 

the inline function f1 would be put into the section “.gnu.linkonce.f1″. This simple implementation 

works well enough, but it has a flaw in that some functions require data in multiple sections; e.g., 

the instructions may be in one section and associated static data may be in another section. Since 

different instances of the inline function may be compiled differently, the linker can not reliably and 

consistently discard duplicate data (I don’t know how the Microsoft linker handles this problem). 

Recent versions of ELF introduce section groups. These implement an officially sanctioned version of 

COMDAT in ELF, and avoid the problem of “.gnu.linkonce” sections. I described these briefly in an 

earlier blog entry. A special section of type SHT_GROUP contains a list of section indices in the 

group. The group is retained or discarded as a whole. The string associated with the group is found 

in the symbol table. Putting the string in the symbol table makes it awkward to retrieve, but since 

the string is generally the name of a symbol it means that the string only needs to be stored once in 

the object file; this is a minor optimization for C++ in which symbol names may be very long. 

More tomorrow.  
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C++ Template Instantiation 

There is still more C++ fun at link time, though somewhat less related to the linker proper. A C++ 

program can declare templates, and instantiate them with specific types. Ideally those specific 

instantiations will only appear once in a program, not once per source file which instantiates the 

templates. There are a few ways to make this work. 

For object file formats which support COMDAT and vague linkage, which I described yesterday, the 

simplest and most reliable mechanism is for the compiler to generate all the template instantiations 

required for a source file and put them into the object file. They should be marked as COMDAT, so 

that the linker discards all but one copy. This ensures that all template instantiations will be available 

at link time, and that the executable will have only one copy. This is what gcc does by default for 

systems which support it. The obvious disadvantages are the time required to compile all the 

duplicate template instantiations and the space they take up in the object files. This is sometimes 

called the Borland model, as this is what Borland’s C++ compiler did. 

Another approach is to not generate any of the template instantiations at compile time. Instead, 

when linking, if we need a template instantiation which is not found, invoke the compiler to build it. 

This can be done either by running the linker and looking for error messages or by using a linker 

plugin to handle an undefined symbol error. The difficulties with this approach are to find the source 

code to compile and to find the right options to pass to the compiler. Typically the source code is 

placed into a repository file of some sort at compile time, so that it is available at link time. The 

complexities of getting the compilation steps right are why this approach is not the default. When it 

works, though, it can be faster than the duplicate instantiation approach. This is sometimes called 

the Cfront model. 

gcc also supports explicit template instantiation, which can be used to control exactly where 

templates are instantiated. This approach can work if you have complete control over your source 

code base, and can instantiate all required templates in some central place. This approach is used 

for gcc’s C++ library, libstdc++. 

C++ defines a keyword export which is supposed to permit exporting template definitions in such 

a way that they can be read back in by the compiler. gcc does not support this keyword. If it worked, 

it could be a slightly more reliable way of using a repository when using the Cfront model. 
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Exception Frames 

C++ and other languages support exceptions. When an exception is thrown in one function and 

caught in another, the program needs to reset the stack pointer and registers to the point where the 

exception is caught. While resetting the stack pointer, the program needs to identify all local 

variables in the part of the stack being discarded, and run their destructors if any. This process is 

known as unwinding the stack. 

The information needed to unwind the stack is normally stored in tables in the program. Supporting 

library code is used to read the tables and perform the necessary operations. I’m not going to 

describe the details of those tables here. However, there is a linker optimization which applies to 

them. 

The support libraries need to be able to find the exception tables at runtime when an exception 

occurs. An exception can be thrown in one shared library and caught in a different shared library, so 

finding all the required exception tables can be a nontrivial operation. One approach that can be 

used is to register the exception tables at program startup time or shared library load time. The 

registration can be done at the right time using the global constructor mechanism. 

However, this approach imposes a runtime cost for exceptions, in that it takes longer for the 

program to start. Therefore, this is not ideal. The linker can optimize this by building tables which 

can be used to find the exception tables. The tables built by the GNU linker are sorted for fast 

lookup by the runtime library. The tables are put into a PT_GNU_EH_FRAME segment. The supporting 

libraries then need a way to look up a segment of this type. This is done via the dl_iterate_phdr 

API provided by the GNU dynamic linker. 

Note that if the compiler believes that the linker will generate a PT_GNU_EH_FRAME segment, it 

won’t generate the startup code to register the exception tables. Thus the linker must not fail to 

create this segment. 

Since the GNU linker needs to look at the exception tables in order to generate the 

PT_GNU_EH_FRAME segment, it will also optimize by discarding duplicate exception table 

information. 

I know this is section is rather short on details. I hope the general idea is clear. 

More tomorrow.  
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Warning Symbols 

The GNU linker supports a weird extension to ELF used to issue warnings when symbols are 

referenced at link time. This was originally implemented for a.out using a special symbol type. For 

ELF, I implemented it using a special section name. 

If you create a section named .gnu.warning.SYMBOL, then if and when the linker sees an 

undefined reference to SYMBOL, it will issue a warning. The warning is triggered by seeing an 

undefined symbol with the right name in an object file. Unlike the warning about an undefined 

symbol, it is not triggered by seeing a relocation entry. The text of the warning is simply the 

contents of the .gnu.warning.SYMBOL section. 

The GNU C library uses this feature to warn about references to symbols like gets which are 

required by standards but are generally considered to be unsafe. This is done by creating a section 

named .gnu.warning.gets in the same object file which defines gets. 

The GNU linker also supports another type of warning, triggered by sections named .gnu.warning 

(without the symbol name). If an object file with a section of that name is included in the link, the 

linker will issue a warning. Again, the text of the warning is simply the contents of the 

.gnu.warning section. I don’t know if anybody actually uses this feature. 

Short entry today, more tomorrow.  
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Incremental Linking 

Often a programmer will make change a single source file and recompile and relink the application. 

A standard linker will need to read all the input objects and libraries in order to regenerate the 

executable with the change. For a large application, this is a lot of work. If only one input object file 

changed, it is a lot more work than really needs to be done. One solution is to use an incremental 
linker. An incremental linker makes incremental changes to an existing executable or shared library, 

rather than rebuilding them from scratch. 
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I’ve never actually written or worked on an incremental linker, but the general idea is straightforward 

enough. When the linker writes the output file, it must attach additional information. 

• The linker must create a mapping of object files to areas in the output file, so that an 

incremental link will know what to remove when replacing an object file.  

• The linker must retain all the relocations for each input object which refer to symbols defined in 

other objects, so that it can reprocess them when symbols change. The linker should store the 

relocations mapped by symbol, so that it can quickly find the relevant relocations.  

• The linker should leave extra space in the text and data segments, to allow for object files to 

grow to a limited extent without requiring rewriting the whole executable. It must keep a map 

of where this extra space is, as it will tend to move over time over the course of incremental 

links.  

• The linker should keep a list of object file timestamps in the output file, so that it can quickly 

determine which objects have changed.  

With this information, the linker can identify which object files have changed since the last time the 

output file was linked, and replace them in the existing output file. When an object file changes, the 

linker can identify all the relocations which refer to symbols defined in the object file, and reprocess 

them. 

When an object file gets too large to fit in the available space in a text or data segment, then the 

linker has the option of creating additional text or data segments at different addresses. This 

requires some care to ensure that the new code does not collide with the heap, depending upon how 

the local malloc implementation works. Alternatively, the incremental linker could fall back on 

doing a full link, and allocating more space again. 

Incremental linking can greatly speed up the edit/compile/debug cycle. Unfortunately it is not 

implemented in most common linkers. Of course an incremental link is not equivalent to a final link, 

and in particular some linker optimizations are difficult to implement while acting incrementally. An 

incremental link is really only suitable for use during the development cycle, which is course the time 

when the speed of the linker is most important. 

More on Monday.  
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I’ve pretty much run out of linker topics. Unless I think of something new, I’ll make tomorrow’s post 

be the last one, for a total of 20. 

__start and __stop Symbols 

A quick note about another GNU linker extension. If the linker sees a section in the output file which 

can be part of a C variable name–the name contains only alphanumeric characters or underscore–the 

linker will automatically define symbols marking the start and stop of the section. Note that this is 

not true of most section names, as by convention most section names start with a period. But the 

name of a section can be any string; it doesn’t have to start with a period. And when that happens 

for section NAME, the GNU linker will define the symbols __start_NAME and __stop_NAME to the 

address of the beginning and the end of section, respectively. 

This is convenient for collecting some information in several different object files, and then referring 

to it in the code. For example, the GNU C library uses this to keep a list of functions which may be 

called to free memory. The __start and __stop symbols are used to walk through the list. 

In C code, these symbols should be declared as something like extern char __start_NAME[]. 

For an extern array the value of the symbol and the value of the variable are the same. 

Byte Swapping 

The new linker I am working on, gold, is written in C++. One of the attractions was to use template 

specialization to do efficient byte swapping. Any linker which can be used in a cross-compiler needs 

to be able to swap bytes when writing them out, in order to generate code for a big-endian system 

while running on a little-endian system, or vice-versa. The GNU linker always stores data into 

memory a byte at a time, which is unnecessary for a native linker. Measurements from a few years 

ago showed that this took about 5% of the linker’s CPU time. Since the native linker is by far the 

most common case, it is worth avoiding this penalty. 

In C++, this can be done using templates and template specialization. The idea is to write a 

template for writing out the data. Then provide two specializations of the template, one for a linker 

of the same endianness and one for a linker of the opposite endianness. Then pick the one to use at 

compile time. The code looks this; I’m only showing the 16-bit case for simplicity. 

// Endian simply indicates whether the host is big endian or not. 
struct Endian 
{ 
public: 



// Used for template specializations. 
static const bool host_big_endian = __BYTE_ORDER == __BIG_ENDIAN; 
}; 
// Valtype_base is a template based on size (8, 16, 32, 64) which 
// defines the type Valtype as the unsigned integer of the specified 
// size. 
template 
struct Valtype_base; 
template<> 
struct Valtype_base<16> 
{ 
 typedef uint16_t Valtype; 
}; 
// Convert_endian is a template based on size and on whether the host 
// and target have the same endianness. It defines the type Valtype 
// as Valtype_base does, and also defines a function convert_host 
// which takes an argument of type Valtype and returns the same value, 
// but swapped if the host and target have different endianness. 
template 
struct Convert_endian; 
template 
struct Convert_endian 
{ 
typedef typename Valtype_base::Valtype Valtype; 
static inline Valtype 
convert_host(Valtype v) 
{ return v; } 
}; 
template<> 
struct Convert_endian<16, false> 
{ 
typedef Valtype_base<16>::Valtype Valtype; 
static inline Valtype 
convert_host(Valtype v) 
{ return bswap_16(v); } 
}; 
// Convert is a template based on size and on whether the target is 
// big endian. It defines Valtype and convert_host like 
// Convert_endian. That is, it is just like Convert_endian except in 
// the meaning of the second template parameter. 
template 
struct Convert 
{ 
typedef typename Valtype_base::Valtype Valtype; 
static inline Valtype 
convert_host(Valtype v) 
{ 
return Convert_endian 
::convert_host(v); 
} 
}; 
// Swap is a template based on size and on whether the target is big 
// endian. It defines the type Valtype and the functions readval and 
// writeval. The functions read and write values of the appropriate 
// size out of buffers, swapping them if necessary. 
template 
struct Swap 
{ 
typedef typename Valtype_base::Valtype Valtype; 
static inline Valtype 
readval(const Valtype* wv) 
{ return Convert::convert_host(*wv); } 
static inline void 
writeval(Valtype* wv, Valtype v) 
{ *wv = Convert::convert_host(v); } 



}; 

 

Now, for example, the linker reads a 16-bit big-endian value using Swap<16,true>::readval. 

This works because the linker always knows how much data to swap in, and it always knows whether 

it is reading big- or little-endian data.  
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This will be my last blog posting on linkers for the time being. Tomorrow my blog will return to its 

usual trivialities. People who are specifically interested in linker information are warned to stop 

reading with this post. 

I’ll close the series with a short update on gold, the new linker I’ve been working on. It currently 

(September 25, 2007) can create executables. It can not create shared libraries or relocateable 

objects. It has very limited support for linker scripts–enough to read /usr/lib/libc.so on a 

GNU/Linux system. It doesn’t have any interesting new features at this point. It only supports x86. 

The focus to date has been entirely on speed. It is written to be multi-threaded, but the threading 

support has not been hooked in yet. 

By way of example, when linking a 900M C++ executable, the GNU linker (version 2.16.91 

20060118 on an Ubuntu based system) took 700 seconds of user time, 24 seconds of system time, 

and 16 minutes of wall time. gold took 7 seconds of user time, 3 seconds of system time, and 30 

seconds of wall time. So while I can’t promise that it will stay as fast as all features are added, it’s in 

a pretty good position at the moment. 

I’m the main developer on gold, but I’m not the only person working on it. A few other people are 

also making improvements. 

The goal is to release gold as a free program, ideally as part of the GNU binutils. I want it to be more 

nearly feature complete before doing this, though. It needs to at least support -shared and -r. I 

doubt gold will ever support all of the features of the GNU linker. I doubt it will ever support the full 

GNU linker script language, although I do plan to support enough to link the Linux kernel. 

Future plans for gold, once it actually works, include incremental linking and more far-reaching 

speed improvements.  
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