

SSA

Static Single Assignment (SSA) was developed by R. Cytron, J. Ferrante, et al. in the 1980s.

Every variable is statically assigned exactly one time in the source code (although that statement may execute many times at runtime)

- That is, there is only one def (definition) of a particular variable.

What about code like.
$\mathrm{x}:=0$
$\mathrm{x}:=\mathrm{x}+1$

Convert original variable name to name ${ }_{\text {version }}\left(x \rightarrow x_{1}, x_{2}\right)$ in different places as it is assigned to:
$\mathrm{x}_{1}:=0$
$\mathrm{x}_{2}:=\mathrm{x}_{1}+1$

Multiple Paths

This version-based naming convention is sufficient for straight line code, but what about the case when multiple control flow paths may assign to the same original location?

We introduce a phi-function (ϕ-function) that selects the output based upon the path that was executed.

Phi Functions	
Source Code	SSA Form
$\begin{aligned} & \begin{array}{l} x=0 ; \\ y=1 ; \end{array} \\ & \text { while }(x<100) \\ & \quad x=x+1 ; \\ & y=y+x ; \end{aligned}$	x_{0} $:=0$ y_{0} $:=1$ if $\quad\left(\mathrm{x}_{0}>=100\right)$ goto next loop: $\quad \mathrm{x}_{1}$ $:=\phi\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)$ y_{1} $:=\phi\left(\mathrm{y}_{0}, \mathrm{y}_{2}\right)$ x_{2} $:=\mathrm{x}_{1}+1$ y_{2} $:=\mathrm{y}_{1}+\mathrm{x}_{2}$ if $\left(\mathrm{x}_{2}<100\right)$ goto loop next: $\quad \mathrm{x}_{3}:=\phi\left(\mathrm{x}_{0}, \mathrm{x}_{2}\right)$ $\mathrm{y}_{3}:=\phi\left(\mathrm{y}_{0}, \mathrm{y}_{2}\right)$

Phi Functions

ϕ-functions are not three-address code

- Need some alternate way to represent the variable number of arguments (one for each control-flow path to the block that assigns the variable).
- Perhaps use an extra data structure to hold the arguments

Where to insert ϕ-functions?

- Insert ϕ-functions for each value at the start of each basic block that has more than one predecessor in the CFG
- Too naïve, but it works

Path-Convergence Criterion

There should be a ϕ-function for variable a at node z of the flow graph exactly when all of the following are true:

1. There is a block x containing a definition of a,
2. There is a block y (with $y \neq x$) containing a definition of a,
3. There is a nonempty path $P_{x z}$ of edges from x to z,
4. There is a nonempty path $P_{y z}$ of edges from y to z,
5. Paths $P_{x z}$ and $P_{y z}$ do not have any node in common other than z, and
6. The node z does not appear within both $P_{x z}$ and $P_{y z}$ prior to the end, though it may appear in one or the other

Iterated Path-Convergence

The start node contains an implicit definition of every variable

- formal parameters
- a \leftarrow uninitialized

A ϕ-function also counts as a definition of a, so the path-convergence criterion must be considered as a set of equations to be solved by iteration.
while there are nodes x, y, z satisfying conditions 1-5 and z does not contain a ϕ-function for a do
insert $a \leftarrow \phi(a, a, . . ., a)$ at node Z
where the ϕ-function has as many a arguments as there are predecessors of node z.

The iterated path-convergence algorithm for placing ϕ-functions is not practical \cdot \cdot Must examine every triple of nodest x, y, z and
A much more efficient algorithm uses the dominator tree of the control flow graph.

Basic Dominator Algorithm	
Input: $\mathrm{N}=$ set of nodes in CFG $r=$ root of CFG	```Dominators[r] = {r} foreach node n \in (N - r) Dominators[n] = N```
Output: Set of Dominator sets for each CFG node	```do changed = false foreach node n \in (N - r) T = N foreach node p in Predecessors(n) T = T \cap Dominators[p] D = TU n if (D != Dominators[n]) changed = true Dominators[n] = D until(!changed)```

long evensum $=0$;
while(i<1000000)
if ($\mathrm{i} \% 2==0$) $\{$ evenSum+=i;
)
\}
return;

Strict \& Immediate Dominance

```
a strictly dominates b if
    1. a dom b and
    2. }a\not=b\mathrm{ .
For }a\not=b,a\mathrm{ immediately dominates }b\mathrm{ if and only if:
    1. a dom b, and
    2. there does not exist a node c such that:
        a. c\not=a and c\not=b
        b. a dom c and c dom b
```

Thus, a idom b means that the closest dominator of b to the root (travelling
backwards from b along the reverse control flow edges) is a
The immediate dominator of a node is unique.

Immediate Dominator Algorithm	
Input: $\mathrm{N}=$ set of nodes in CFG Dominators $[\mathrm{x}]=$ Dominators of x $r=\text { root of CFG }$ Output: Immediate dominator for each CFG node	```temp = {} foreach node n \in N temp[n] = Dominators[n] - {n} foreach node n \in (N - {r}) foreach node s E temp[n] foreach node t \in (temp[n] - {s}) if(t \in temp[s]) { temp[n] -= {t} foreach node n \in (N - {r}) idom[n] = temp[n]```

Dominance Frontier

The dominance frontier of a node a is the set of all nodes s such that a dominates a predecessor of s, but does not strictly dominate s.

It is the "border" between dominated and undominated nodes

Dominance Frontier

A definition in node n forces a φ-function at join points that lie just outside the region of the CFG that n dominates.

A definition in node n forces a corresponding φ-function at any join point m where:

1. n dominates a predecessor of $m(q \in \operatorname{preds}(m)$ and $n \in \operatorname{Dom}(q))$, and
2. n does not strictly dominate m.
(Using strict dominance rather than dominance allows a φ-function at the start of a single-block loop. In that case, $n=m$, and $m \notin \operatorname{Dom}(n)-\{n\}$.)

We call the collection of nodes m that have this property with respect to n the dominance frontier of n, denoted $\operatorname{DF}(n)$.

Computing the Dominance Frontier

Alternative Algorithm:
foreach node n in the CFG
$\mathrm{DF}(\mathrm{n})=\{ \}$
foreach node n in the CFG
if (n has multiple predecessors)
foreach predecessor p of n
runner $=p$
while(runner $\neq \operatorname{IDom}(\mathrm{n})$)
DF (runner) $=\mathrm{DF}$ (runner) $U(\mathrm{n})$ runner = IDom(runner)

Dominance Frontier Criterion

Whenever node x contains a definition of some variable a, then any node z in the dominance frontier of x needs a φ-function for a

Since a φ-function itself is a definition, we must iterate the dominance-frontier criterion until there are no nodes that need φ-functions.

The iterated dominance frontier criterion and the iterated path convergence criterion specify exactly the same set of nodes at which to put φ-functions.

Dominance Frontier

Block $n=1$: Has No Predecessors DF(1) $=\{ \}$

Block $\mathbf{n = 2}$: Has multiple predecessors (1,5)
Runner = 1
IDom(2) $=1$ \# Done with 1

Runner $=5$
IDom(2) $=1$
$D F(5)=\{ \}+\{2\}=\{2\}$
Runner $=\operatorname{IDom}($ Runner $)=3$
RF $(3)=\{ \}+\{2\}=\{2\}$
Runner $=\operatorname{IDom}($ Runner $)=2$
$D F(2)=\{ \}+\{2\}=\{2\}$
Runner $=$ IDom(Runner) $=1$ \# Done

Inserting φ-Functions

Starting with a program not in SSA form, we need to insert just enough φ-functions to satisfy the iterated dominance frontier criterion.

Start with a set V of variables, a graph G of control-flow nodes, and for each node n a set $A_{\text {orig }}[n]$ of variables defined in node n.

Compute $A_{\varphi}[a]$, the set of nodes that must have φ-functions for variable a.
Use a work list W of nodes that might violate the dominance-frontier criterion

Placing Phi Functions

Place- φ-Functions $=$
foreach node n
foreach variable a in $A_{\text {oriq }}[n]$
defsites[a] \leftarrow defsites $[a] \cup\{n\}$
foreach variable a
$W \leftarrow$ defsites[a]
while W not empty
remove some node n from w
foreach y in $D F[n]$
if $(a \notin A \varphi[y])$
insert the statement $a \leftarrow \varphi(a, a, \ldots, a)$ at
the top of block y, where the φ-function
has as many arguments as y has predecessors
$A_{\varphi}[Y] \leftarrow A_{\varphi}[Y] \cup\{a\}$
if $\left(a \in A_{o r i g}[y]\right)$
$W \leftarrow W \cup\{y\}$

Inserting φ-Functions

	$\begin{aligned} & V=\{\text { evenSum, } i\} \\ & \text { Def[evenSum }]=\{1,4\} \\ & \operatorname{Def}[i]=\{1,5\} \end{aligned}$ For evenSum: $\begin{aligned} & \mathrm{W}=\{1,4\} \\ & n=1 \\ & \mathrm{DF}[1]=\{ \} \text { \#Done } \\ & n=4 \\ & \operatorname{DF}[4]=\{5\} \end{aligned}$ Insert φ into block 5 for evenSum For i : $\begin{aligned} & \mathrm{W}=\{1,5\} \\ & n=1 \\ & \mathrm{DF}[1]=\{ \} \text { \#Done } \\ & n=5 \\ & \operatorname{DF}[5]=\{2\} \end{aligned}$ Insert φ into block 2 for i

Renaming the Variables

After the φ-functions are placed, we can walk the dominator tree, renaming the different definitions (including φ-functions) of variable a to a_{1}, a_{2}, a_{3}, and so on.

In a straight-line program, we would rename all the definitions of a, and then each use of a is renamed to use the most recent definition of a

For a program with control-flow branches and joins whose graph satisfies the dominance-frontier criterion, we rename each use of a to use the closest definition d of a that is above a in the dominator tree.

```
Renaming Variables (I)
```

 Initialization:
    ```
    Initialization:
    foreach variable 
    foreach variable 
        Ceach variable 
        Ceach variable 
        Stack[a] ~ empty
        Stack[a] ~ empty
        push 0 onto Stack[a]
        push 0 onto Stack[a]
    Rename (n) =
    Rename (n) =
        foreach statement }S\mathrm{ in block n
        foreach statement }S\mathrm{ in block n
            if }S\mathrm{ is not a }\varphi\mathrm{ -function
            if }S\mathrm{ is not a }\varphi\mathrm{ -function
            foreach use of some variable }x\mathrm{ in S
            foreach use of some variable }x\mathrm{ in S
                i&top (Stack [x])
                i&top (Stack [x])
                replace the use of x with }\mp@subsup{x}{i}{}\mathrm{ in S
                replace the use of x with }\mp@subsup{x}{i}{}\mathrm{ in S
            foreach definition of some variable a in S
            foreach definition of some variable a in S
            Count[a] - Count[a] + 1
            Count[a] - Count[a] + 1
            i & Count[a]
            i & Count[a]
            push i onto Stack[a]
            push i onto Stack[a]
            replace definition of a with definition of a}\mp@subsup{a}{i}{}\mathrm{ in S
```

```
            replace definition of a with definition of a}\mp@subsup{a}{i}{}\mathrm{ in S
```

```
Renaming Variables (II)
    foreach successor \(Y\) of block \(n\),
        Suppose \(n\) is the \(j^{\text {th }}\) predecessor of \(Y\)
        foreach \(\varphi\)-function in \(Y\)
            suppose the \(j^{\text {th }}\) operand of the \(\varphi\)-function is a
            i -top (Stack[a])
            replace the \(j^{\text {th }}\) operand with \(a_{j}\)
    foreach child \(X\) of \(n\) in the dominator tree
        Rename ( \(X\) )
    foreach statement \(S\) in block
        foreach definition of some variable a in \(S\)
        pop Stack[a]


\section*{Speed of SSA Conversion}

The DF computation does work proportional to the size (number of edges) of the original graph, plus the size of the dominance frontiers it computes. In practice, this is usually linear in the size of the graph.

The placing of phi functions algorithm does a constant amount of work for
1. each node and edge in the CFG,
2. each statement in the program,
3. each element of every dominance frontier, and
4. each inserted \(\varphi\)-function.

For a program of size \(N\)
- the amounts (1) and (2) are proportional to \(N\),
- (3) is usually approximately linear in \(N\)
- (4) could be \(N^{2}\) in the worst case, but empirical measurement has shown that it is usually proportional to \(N\).

\section*{Numbering}


\section*{Speed of SSA Conversion}

Renaming takes time proportional to the size of the program (after \(\varphi\)-functions are inserted), so in practice it should be approximately linear in the size of the original program.

The algorithms for computing SSA from the dominator tree are thus quite efficient.

But the iterative set-based algorithm for computing dominators, may be slow in the worst case

The Lengauer-Tarjan algorithm is a nearly linear-time algorithm that computes the dominator tree based upon the depth-first search spanning tree of the CFG.

\section*{Converting out of SSA}

After program transformations and optimization, a program in SSA form must be translated into some executable representation without \(\varphi\)-functions.

The definition \(y \leftarrow \varphi\left(x_{1}, x_{2}, x_{3}\right)\) can be translated as:
- move \(y \leftarrow x_{1}\) if arriving along predecessor edge 1 ,
- move \(y \leftarrow x_{2}\) if arriving along predecessor edge 2 , and
- move \(y \leftarrow x_{3}\) if arriving along predecessor edge 3 .

It is tempting simply to assign \(x_{1}\) and \(x_{2}\) the same register if they were derived from the same variable \(x\). However, transformations on SSA form may make live ranges interfere.
move instructions.```

