
4/22/2013

1

Method Optimizations

Method Inlining
Method inlining replaces a function call site with the body of the callee.

Example:

int max(int a, int b) {

if(a > b) return a;

else return b;

}

int main() {

int x = 3;

int y = 5;

int z = max(x,y);

}

int main() {
int x = 3;
int y = 5;
int z;
if(x > y) z = x;
else z = y;

}

Method Inlining
Benefits:

• Less dynamic instructions

• Call site removed, prologue and epilogue code eliminated

• Smaller dynamic memory needs since the activation record is eliminated

• Removal of control flow transfer helps eliminate branch penalties and
improves instruction cache locality

• After inlining is performed, more code is available to the optimizer to
improve

Disadvantages:

• Static code size increase is likely

• Code growth can impact instruction cache performance

• May increase register pressure

Method Inlining
In languages like C++, there is a keyword inline that hints to the compiler that a
method should be inlined during compilation.

In C, this is one of the benefits of using a parameterized #define macro.

In OOPLs, we often have very small methods (usually acting as accessors and
mutators) that can be inlined.

Inlining is not always the right thing to do, and so the compiler must use heuristics
to decide to apply it or not.

Unknown depth recursion makes inlining difficult.

Tail Recursion Elimination
A tail call is a function call site that appears as the last statement in a function.

Example:

int factorial(int x) {

if(x < 2) return 1;

return x * fact(x-1);

}

Tail calls can be implemented without adding a new activation record to the stack.

The activation record of the original call is reused, substituting in the new
parameter values as appropriate. The tail call is then replaced with a jump to the
beginning of the function.

Optimization Order

4/22/2013

2

A: Source Code or High-Level IR
• Scalar replacement of array references

• Data-cache optimization

B: Medium-Level IR
• Procedure integration

• Tail-call optimization

• Scalar replacement of aggregates

• Sparse conditional constant propagation

• Interprocedural constant propagation

• Procedure specialization and cloning

C:Medium/Low-level IR
• Global value numbering

• Local and global copy propagation

• Sparse conditional constant propagation

• Dead code elimination

• Local and global common subexpression elimination

• Loop-invariant code motion

• Partial redundancy elimination

• Code hoisting

• Induction-variable strength reduction

• Linear-function test replacement

• Induction-variable removal

• Unnecessary bounds-checking elimination

• Control-flow optimizations

D: Low-level IR/Machine code
• Inline expansion

• Leaf routine optimization

• Shrink wrapping

• Machine idioms

• Tail merging

• Branch optimizations and conditional moves

• Dead-code elimination

• Software pipelining: loop unrolling, variable expansion, etc.

• Basic-block scheduling

• Register allocation

• Intraprocedural I-cache optimization

• Instruction prefetching

• Data prefetching

• Branch prediction

Each Step
After A, B, C, and D,

• Constant folding

• Algebraic simplification

E: Link Time Optimization
• Interprocedural register allocation

• Aggregation of global references

• Interprocedural I-cache optimization

4/22/2013

3

Runtime Optimization

Just-in-time Compilation
Just-in-time (JIT) compilers are software dynamic translators that convert one
language into another at runtime, when a segment of code (often a method) is
needed.

JIT compilers can be used to support dynamic languages which are not
traditionally compiled such as JavaScript or to support languages compiled into
platform-independent bytecode, like Java.

Since the JIT compiler serves as a runtime environment, we can access dynamic
properties of the program in order to better optimize it.

Java
class EvenOdd {

public static void main(String args[]) {

long evenSum=0, oddSum=0;

for(int i=0;i<1000000;i++) {

if(i%2 == 0) {

evenSum+=i;

}

else {

oddSum+=i;

}

}

System.out.println("Even sum: " + evenSum);

System.out.println("Odd sum: " + oddSum);

}

}

Bytecode
00 : lconst_0

01 : lstore_1

02 : lconst_0

03 : lstore_3

04 : iconst_0

05 : istore local.05

07 : iload local.05

09 : ldc 1

0B : if_icmpge pos.2A

0E : iload local.05

10 : iconst_2

11 : irem

12 : ifne pos.1E

15 : lload_1

16 : iload local.05

18 : i2l

19 : ladd

1A : lstore_1

1B : goto pos.24

1E : lload_3

1F : iload local.05

21 : i2l

22 : ladd

Bytecode
23 : lstore_3

24 : iinc local.05, 1

27 : goto pos.07

2A : getstatic java.io.PrintStream java.lang.System.out

2D : new java.lang.StringBuilder

30 : dup

31 : invokespecial void java.lang.StringBuilder.<init>()

34 : ldc "Even sum: "

36 : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(java.lang.String)

39 : lload_1

3A : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(long)

3D : invokevirtual java.lang.String java.lang.StringBuilder.toString()

40 : invokevirtual void java.io.PrintStream.println(java.lang.String)

43 : getstatic java.io.PrintStream java.lang.System.out

46 : new java.lang.StringBuilder

49 : dup

4A : invokespecial void java.lang.StringBuilder.<init>()

4D : ldc "Odd sum: "

4F : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(java.lang.String)

52 : lload_3

53 : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(long)

56 : invokevirtual java.lang.String java.lang.StringBuilder.toString()

59 : invokevirtual void java.io.PrintStream.println(java.lang.String)

5C : return

Adaptive Optimization
Consider a JIT-compiler as part of a Java Virtual Machine (JVM).

Java Bytecode is a stack-oriented machine language. The JVM can use
interpretation to implement the virtual CPU for Java Bytecode.

However, this interpretation is slow.

One option is to use JIT compilation to convert the bytecode into machine code.

However, compilation can be slow as well.

We have two ideas:

1. Apply cheap yet effective optimizations

2. Apply optimization only to regions that will benefit from it

4/22/2013

4

Cost-Benefit Analysis
Let us only apply optimization O to method M if the time gained from the
optimization is greater than the cost of doing the optimization.

cost(M’ = O(M)) < (cost(M) - cost(M’))

We need models of cost for both the optimization and the optimized method. How
can we know?

For the cost of the optimization, we can base this on the complexity of the method
and the average-case complexity of the algorithm O.

For the cost of the optimized method M’, we must be able to predict the future.

To do this, we can look at the past.

Profiling
We can generate a profile of method M to identify how “hot” it is. That is, how
much time has been spent in the method so far by inserting instrumentation into
the method code during compilation or interpretation to see how much time is
spent in that code.

Execution time typically follows the Pareto Principle (the 80/20 or 90/10 rule):

90%(80%) of the time is spent in 10%(20%) of the code.

Let us only optimize those methods where we are likely to gain the most.

Choice of Optimizations
Let us then define an adaptive optimization scheme. Each time a method reaches
a certain level of hotness, recompile it at the next level.

For instance, a Java Adaptive Optimizer might have 4 or 5 levels:

Level 0: no optimization, potentially even interpretation

Level 1: Baseline JIT, naïve code that still mimics the stack-based nature of the
bytecode

Level 2: Do register allocation to remove as many of the operand stack loads and
stores as possible

Level 3: Apply some basic control and dataflow optimizations

Level 4: Aggressively optimize the code

This is how the Java HotSpot compiler and Jikes Research Virtual Machine work.

