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A “Bad” Name
Optimization is the process by which we turn a program into a better one, for some 
definition of better.

This is impossible in the general case.

For instance, a fully optimizing compiler for size must be able to recognize all 
sequences of code that are infinite loops with no output, so that it can replace it 
with a one-instruction infinite loop.

This means we must solve the halting problem.

So, what can we do instead?

Optimization
An optimizing compiler transforms P into a program P’ that always has the same 
input/output behavior as P, and might be smaller or faster.

Optimizations are code or data transformations which typically result in improved 
performance, memory usage, power consumption, etc.

Optimizations applied naively may sometimes result in code that performs worse.

We saw one potential optimization before, loop interchange, where we decide to 
change the order of loop headers in order to get better cache locality. However, 
this may result in worse overall performance if the resulting code must do more 
work and the arrays were small enough to fit in the cache regardless of the order.

Register Allocation
Register allocation is also an optimization as we previously discussed.

On register-register machines, we avoid the cost of memory accesses anytime we 
can keep the result of one computation available in a register to be used as an 
operand to a subsequent instruction.

Good register allocators also do coalescing which eliminates move instructions, 
making the code smaller and faster.

Dataflow Analyses

Reaching Definitions
Does a particular value t directly affect the value of t at another point in the 
program?

Given an unambiguous definition d, 
t ← a ⊕ b 

or
t ← M[a]

we say that d reaches a statement u in the program if there is some path in the 
CFG from d to u that does not contain any unambiguous definition of t.

An ambiguous definition is a statement that might or might not assign a value to t, 
such as a call with pointer parameters or globals. Decaf will not register allocate 
these, and so we can ignore the issue.
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Reaching Definitions
We label every move statement with a definition ID, and we manipulate sets of 
definition IDs.

We say that the statement 
d1: t ← x ⊕ y

generates the definition d1, because no matter what other definitions reach the 
beginning of this statement, we know that d1 reaches the end of it.

This statement kills any other definition of t, because no matter what other 
definitions of t reach the beginning of the statement, they cannot directly affect the 
value of t after this statement.

Reaching Definitions

	
∈

∪

This looks familiar, but is the reverse of our liveness calculations. 

We solve it using iteration the same as with liveness.

Available Expressions
An expression:

x ⊕ y 

is available at a node n in the flow graph if, on every path from the entry node of 
the graph to node n, x ⊕ y is computed at least once and there are no 
definitions of x or y since the most recent occurrence of x ⊕ y on that path.

Any node that computes x ⊕ y generates {x ⊕ y}, and any definition of x or 
y kills {x ⊕ y}.

A store instruction (M[a] ← b) might modify any memory location, so it kills any 
fetch expression (M[x]). If we were sure that a = x, we could be less conservative, 
and say that M[a] ← b does not kill M[x]. This is called alias analysis.

Available Expressions

	
∈

∪

Compute this by iteration.

Define the in set of the start node as empty, and initialize all other sets to full (the 
set of all expressions), not empty. 

Intersection makes sets smaller, not bigger.

Reaching Expressions
We say that an expression:

t ← x ⊕ y 

(in node s of the flow graph) reaches node n if there is a path from s to n that does 
not go through any assignment to x or y, or through any computation of x ⊕ y. 

Dataflow Optimizations
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Dead-code Elimination
If there is an IR instruction

s : a ← b ⊕ c 

or 
s : a ← M[x] 

such that a is not live-out of s, then the instruction can be deleted.

Some instructions have implicit side effects such as raising an exception on 
overflow or division by zero. The deletion of those instructions will change the 
behavior of the program.

The optimizer shouldn’t always do this. Optimizations that eliminate even 
seemingly harmless runtime behavior cause unpredictable behavior of the 
program. A program debugged with optimizations on may fail with them disabled.

Dead Code Elim in SSA
SSA makes dead-code analysis quick and easy.

A variable is live at its site of definition iff there are uses of this variable:

• there can be no other definition of the same variable (SSA!), and 

• the definition of a variable dominates every use – so there must be a path 
from definition to us

An iterative algorithm for deleting dead code:

while there is some variable v with no uses

and the statement that defines v has no other side effects

do delete the statement that defines v

Dead Code Elim in SSA
W ← a list of all variables in the SSA program

while W is not empty

remove some variable v from W

if v’s list of uses is empty

let S be v’s statement of definition

if S has no side effects other than the assignment to v

delete S from the program

for each variable xi used by S

delete S from the list of uses of xi
W ← W ∪ {xi}

Constant Propagation
Suppose we have a statement d:

t ← c

where c is a constant, 

and another statement n that uses t: 
y ← t ⊕ x

We know that t is constant in n if d reaches n, and no other definitions of t reach n.

In this case, we can rewrite n as:
y ← c ⊕ x

Constant Propagation in SSA
Any φ-function of the form v ← φ(c1, c2, . . . , cn), where all the ci are equal, can be 
replaced by v ←c.

W ← a list of all statements in the SSA program

while W is not empty

remove some statement S from W

if S is v ← φ(c, c, . . . , c) for some constant c

replace S by v ← c

if S is v ← c for some constant c

delete S from the program

for each statement T that uses v

substitute c for v in T

W ← W ∪ {T}

Copy Propagation
This is like constant propagation, but instead of a constant c we have a variable z.

Suppose we have a statement:
d: t ← z

and another statement n that uses t, such as:
n: y ← t ⊕ x

If d reaches n, and no other definition of t reaches n, and there is no definition of z 
on any path from d to n (including a path that goes through n one or more times), 
then we can rewrite n as:

n: y ← z ⊕ x
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Copy Propagation in SSA
A single-argument φ-function x ← φ(y) or a copy assignment x ← y can be 
deleted, and y substituted for every use of x.

Add this to our worklist algorithm.

Constant folding
Constant folding 

If we have a statement
x ← a ⊕ b

where a and b are constant, we can evaluate c ← a ⊕ b at compile time and 
replace the statement with 

x ← c

Constant Conditions
A conditional branch:

if a < b goto L1 else L2

where a and b are constant, can be replaced by either:
goto L1 or goto L2

depending on the (compile-time) value of a < b. 

The control-flow edge from L must be deleted.

The number of predecessors of L2 (or L1) is reduced, and the φ-functions in that 
block must be adjusted by removing the appropriate argument.

Unreachable code
Deleting a predecessor may cause block L2 to become unreachable.

In this case, all the statements in L2 can be deleted.

The variables that are used in these statements are now potentially unused.

The block itself should be deleted, reducing the number of predecessors of its
successor blocks.

Common Subexpression Elim
Compute reaching expressions, that is, find statements of the form 

n: v ← x ⊕ y

such that the path from n to s does not compute x ⊕ y or define x or y.

Choose a new temporary w, and for such n, rewrite as:
n: w ← x ⊕ y

n': v ← w

Finally, modify statement s to be:
s: t ← w

We will rely on copy propagation to remove some or all of the extra assignment

quadruples.

Peephole Optimizations



4/10/2013

5

Peephole Optimizations
Peephole optimizations examine a sliding window of target instructions (called 
the peephole) and replacing instruction sequences within the peephole by a 
shorter or faster sequence, whenever possible.

This can be done on IR or on machine code.

Redundant Loads and Stores
If we see the instruction sequence

mov dword ptr [esp + 8], eax

mov eax, dword ptr [esp + 8]

We can remove it if it is in the same basic block.

Algebraic Simplification
We can identify algebraic identities such as:

x + 0 = 0 + x = x

x * 1 = 1 * x = x

x - 0 = x

x/1 = x

to eliminate computations from a basic block.

Strength Reduction
Certain machine instructions are more expensive than others. One classic 
example is multiplication being 30ish cycles while addition and shifting are just 1 
cycle.

Strength reduction replaces a more expensive operation with a cheaper one.

In the simplest case, we can do things such as replace multiplications with shifts 
(taking care to deal with the rounding of negative numbers correctly).

Expensive Cheaper

x2 x * x

2 * x x + x

x/2 x * 0.5

Loop Optimizations

Loops
A loop in a CFG is a set of nodes S including a header node h with the following 
properties:

• From any node in S there is a path of directed edges leading to h.

• There is a path of directed edges from h to any node in S.

• There is no edge from any node outside S to any node in S other than h.

A loop entry node is one with some predecessor outside the loop.

A loop exit node is one with a successor outside the loop.
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Natural Loops
A back edge in a CFG is an edge whose head dominates its 
tail. 

In the graph shown here, since there are ways to enter into 
block 2 without going into block 3 first and vice versa, there 
is no dominance relationship. Thus, there is no back edge 
in this graph.

Given a back edge, m→ n, the natural loop of m→n is the 
subgraph consisting of:

1. The set of nodes containing n and 

2. All of the nodes from which m can be reached in the 
CFG without passing through n

3. The edge set connecting all of the nodes in its node set.

Node n is thus the loop header.

1

2 3

Loop Preheader
Loop-based optimizations often wish to move 
code out of a loop and place it just before the 
loop header.

To guarantee we have such a place available, 
we will introduce a new, initially empty block 
called the loop preheader. 

All edges from outside the loop whose target 
was the loop header will now go to the 
preheader.

The preheader has a single control flow edge 
from it to the header.

H

1 2

3

P

H

1 2

3

Nested Loops
As long as two natural loops do not share the same header, 
they are either:

• Disjoint,

• Nested, or

• Make up just one loop.

The CFG shown here could arise from two different situations, 
however:

1

2 3

B1: if( i >= 100 ) goto B4;
else if( (i%10)==0 ) goto B3;
else …

B2: …
goto B1;

B3: …
goto B1;

B4: …

B1: if( i<j ) goto B2;
else if( i>j ) goto B3;
else goto B4;

B2: …
goto B1;

B3: …
goto B1;

B4: …

The left loop is an inner loop. They make up one loop together.

Strongly Connected Components
Natural loops are not the only looping structure we can observe. 
The most general looping structure that may occur in a CFG is a 
strongly connected component.

A strongly connected component (SCC) is a subgraph:

GS = (NS,ES) 

Such that every node in NS is reachable from every other node by 
a path that includes only edges in ES.

An SCC is maximal if every SCC containing it is the component 
itself. 

In the CFG shown here, there are 2 SCCs:

1. ({1,2,3}, E) is maximal

2. ({2},{2 → 2})  is not maximal

Entry

Exit

1

2

3

Reducible Flow Graphs
Reducibility is an important but misnamed property.

Reducible results from several kinds of transformations that can be applied to 
CFGs successively to reduce subgraphs into single nodes. If the resultant 
subgraph has a single node, it is considered reducible.

A flowgraph G=(N,E) is reducible iff E can be partitioned into disjoint sets EF, the 
forward edge set, and EB, the back edge set, such that (N,EF) forms a DAG in 
which each node can be reached from the entry node, and the edges in EB are all 
back edges.

Alternatively, if a CFG is reducible, all the loops in it are natural loops 
characterized by their back edges and vice versa: There are no jumps into the 
middle of loops. Each loop is entered via its loop header.

Reducible Flow Graphs
The graph shown here is not a natural loop. 
Either node in the strongly connected 
component (2, 3) can be reached without going 
through the other. 

Regions of the source code, called improper 
regions, make CFGs irreducible. They cause 
multiple-entry strongly connected components to 
arise in the CFG. 

Some languages restrict these improper regions 
from occuring, and even in languages that don’t, 
most loops in programs are natural loops.

1

2 3
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Advantages of Reducible CFGs
Many dataflow analyses can be done very efficiently on reducible flow graphs. 

Instead of using fixed-point iteration, we can determine an order for computing the 
assignments, and calculate in advance how many assignments will be necessary 
There will never be a need to check to see if anything changed.

Loop-Invariant Computations
If a loop contains a statement

t ← a ⊕ b 

such that a has the same value each iteration, and b has the same value each 
iteration, then t will also have the same value each iteration.

We cannot always tell if a will have the same value every time, so we will 
conservatively approximate. The definition:

d : t ← a1 ⊕ a2
is loop-invariant within loop L if, for each operand ai,

1. ai is a constant, or

2. all the definitions of ai that reach d are outside the loop, or

3. only one definition of ai reaches d, and that definition is loop-invariant.

This leads naturally to an iterative algorithm for finding loop-invariant definitions:

1. Find all the definitions whose operands are constant or from outside the loop

2. Repeatedly find definitions whose operands are loop-invariant.

Hoisting
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop and into 
the preheader?

L0:
t ← 0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ← t

L0:
t ← 0

L1:
if i≥N goto L2
i ← i + 1
t ← a ⊕ b
M[i] ← t
goto L1

L2:
x ← t

L0:
t ←0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j] ← t
if i<N goto L1

L2:

L0:
t ←0

L1:
M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ←t

Hoist

Hoisting
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop and into 
the preheader?

L0:
t ← 0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ← t

L0:
t ← 0

L1:
if i≥N goto L2
i ← i + 1
t ← a ⊕ b
M[i] ← t
goto L1

L2:
x ← t

L0:
t ←0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j] ← t
if i<N goto L1

L2:

L0:
t ←0

L1:
M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ←t

Hoist

Hoisting makes the program compute the same result faster.

Hoisting
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop and into 
the preheader?

L0:
t ← 0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ← t

L0:
t ← 0

L1:
if i≥N goto L2
i ← i + 1
t ← a ⊕ b
M[i] ← t
goto L1

L2:
x ← t

L0:
t ←0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j] ← t
if i<N goto L1

L2:

L0:
t ←0

L1:
M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ←t

Hoist Don’t

Hoisting makes the program faster but incorrect – the original program 
does not always execute t ← a ⊕ b, but the transformed program does, 
producing an incorrect value for x if i ≥ N initially.

Hoisting
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop and into 
the preheader?

L0:
t ← 0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ← t

L0:
t ← 0

L1:
if i≥N goto L2
i ← i + 1
t ← a ⊕ b
M[i] ← t
goto L1

L2:
x ← t

L0:
t ←0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j] ← t
if i<N goto L1

L2:

L0:
t ←0

L1:
M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ←t

Hoist Don’t Don’t

The original loop had more than one definition of t, and the transformed 
program interleaves the assignments to t in a different way.
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Hoisting
Suppose t ← a ⊕ b is loop-invariant. Can we hoist it out of the loop and into 
the preheader?

L0:
t ← 0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ← t

L0:
t ← 0

L1:
if i≥N goto L2
i ← i + 1
t ← a ⊕ b
M[i] ← t
goto L1

L2:
x ← t

L0:
t ←0

L1:
i ← i + 1
t ← a ⊕ b
M[i] ← t
t ← 0
M[j] ← t
if i<N goto L1

L2:

L0:
t ←0

L1:
M[j]← t
i ← i + 1
t ← a ⊕ b
M[i] ← t
if i<N goto L1

L2:
x ←t

Hoist Don’t Don’t Don’t

There is a use of t before the loop-invariant definition, so after hoisting, 
this use will have the wrong value on the first iteration of the loop.

Hoisting
With these pitfalls in mind, we can set the criteria for hoisting 

d: t ← a ⊕ b 

to the end of the loop preheader:

1. d dominates all loop exits at which t is live-out, and

2. there is only one definition of t in the loop, and

3. t is not live-out of the loop preheader.

Condition (1) tends to prevent many computations from being hoisted from while 
loops.

To solve this problem, we can transform the while loop into a do…while loop 
preceded by an if statement. The drawback is that this requires duplication of the 
statements that were in the header node, and will not work in cases where there is 
a break in the loop.

Induction Variables
Some loops have a variable i that is incremented or decremented, and a variable

j that is set (in the loop) to i × c + d, where c and d are loop-invariant. 

j = i * c + d

Then we can calculate j ’s value without reference to i : whenever i is incremented 
by a we can increment j by c × a.

i++;

j+= c * a;

Detection Of Induction Variables
sum ← 0

i ← 0

L1: if i ≥ n goto L2

j ← i * 4

k ← j + a

x ← M[k]

sum ← sum + x

i ← i + 1

goto L1

L2:

We say that a variable such as i is a basic 
induction variable, and j and k are derived 
induction variables in the family of i. 

Right after j is defined, we have j = aj +i × bj, 
where aj = 0 and bj = 4. 

We can completely characterize the value of j at 
its definition by (i, a, b), where i is a basic 
induction variable and a and b are loop-invariant 
expressions.

Another derived induction variable is k ← j + ck

(where ck is loop-invariant). Thus k is also in the 
family of i. We can characterize k by the triple: 

(i, aj + ck , bj ), that is, k = aj + ck + i × bj .

Detection Of Induction Variables
The variable i is a basic induction variable in a loop L with header node h if the 
only definitions of i within L are of the form:

i ← i + c or i ← i – c

where c is loop-invariant.

The variable k is a derived induction variable in loop L if:

1. There is only one definition of k within L, of the form:
k ← j × c or k ← j + d

where j is an induction variable and c, d are loop-invariant; and

2. if j is a derived induction variable in the family of i, then:

a) the only definition of j that reaches k is the one in the loop, and

b) there is no definition of i on any path between the definition of j and the 
definition of k.

Strength Reduction
For each derived induction variable j whose triple is (i, a, b), make a new variable j’ 
(although different derived induction variables with the same triple can share the 
same j’ variable). 

After each assignment i ← i + c, make an assignment j’ ← j’ + c × b, where c × b 
is a loop-invariant expression that may be computed in the loop preheader. If c 
and b are both constant, then the multiplication may be done at compile time. 

Replace the (unique) assigment to j with j ← j’. 

Finally, it is necessary to initialize j at the end of the loop preheader, with:

j’ ←a + i × b.



4/10/2013

9

Strength Reduction
sum ← 0

i ← 0

L1: if i ≥ n goto L2

j ← i * 4

k ← j + a

x ← M[k]

sum ← sum + x

i ← i + 1

goto L1

L2:

We find that j is a derived induction 
variable with triple (i, 0, 4), and k has 
triple (i, a, 4).

sum ← 0

i ← 0

j’ ← 0

k’ ← a

L1: if i ≥ n goto L2

j ← j’

k ← k’

x ← M[k]

sum ← sum + x

i ← i + 1

j’ ← j’ + 4

k’ ← k’ + 4

goto L1

L2:

Elimination
sum ← 0

i ← 0

j’ ← 0

k’ ← a

L1: if i ≥ n goto L2

j ← j’

k ← k’

x ← M[k]

sum ← sum + x

i ← i + 1

j’ ← j’ + 4

k’ ← k’ + 4

goto L1

L2:

We can perform dead-code elimination 
to remove the statement j ← j’.

We would also like to remove all the 
definitions of the useless variable j’, but 
technically it is not dead, since it is used 
in every iteration of the loop. 

A variable is useless in a loop L if it is 
dead at all exits from L, and its only use 
is in a definition of itself. All definitions of 
a useless variable may be deleted.

After the removal of j, the variable j’ is 
useless. We can delete j’ ← j’ + 4. This 
leaves a definition of j’ in the preheader
that can now be removed by dead-code 
elimination.

Rewriting Comparisons
sum ← 0

i ← 0

k’ ← a

L1: if i ≥ n goto L2

k ← k’

x ← M[k]

sum ← sum + x

i ← i + 1

k’ ← k’ + 4

goto L1

L2:

A variable k is almost useless if it is 
used only in comparisons against loop-
invariant values and in definitions of 
itself, and there is some other induction 
variable in the same family that is not 
useless.

If we have k < n, where j and k are 
coordinated induction variables in the 
family of i, and n is loop-invariant, then 
we know that:

(j − aj)/bj = (k − ak)/bk

so therefore the comparison k < n can 
be written as:

j < (bj / bk)×(n − ak) + aj

If bj/bk is negative, use > instead.

Rewriting Comparisons
sum ← 0

i ← 0

k’ ← a

L1: if i ≥ n goto L2

k ← k’

x ← M[k]

sum ← sum + x

i ← i + 1

k’ ← k’ + 4

goto L1

L2:

The comparison i < n can be replaced by 
k < a + 4 × n. Then, a + 4 × n is loop-
invariant and should be hoisted. Finally, i
will be useless and may be deleted.

sum ← 0

k’ ← a

b ← n * 4

c ← a + b

L1: if k’ < c goto L2

k ← k’

x ← M[k]

sum ← sum + x

k’ ← k’ + 4

goto L1

L2:

Elimination
sum ← 0

k’ ← a

b ← n * 4

c ← a + b

L1: if k’ < c goto L2

k ← k’

x ← M[k]

sum ← sum + x

k’ ← k’ + 4

goto L1

L2:

Finally, copy propagation can eliminate: 

k ←k’

sum ← 0

k’ ← a

b ← n * 4

c ← a + b

L1: if k’ < c goto L2

x ← M[k’]

sum ← sum + x

k’ ← k’ + 4

goto L1

L2:

Spill Cost Model
When doing register allocation, spills that must be reloaded each iteration will 
adversely affect the performance of the loop. We have the choice of any node in 
the interference graph of significant degree to spill, so our choice is arbitrary but 
important.

We can model the cost of spilling and derive a priority for spilling each remaining 
node when simply or freeze cannot proceed:

We divide by degree to slightly bias those nodes of highest degree as their 
spillage may result in fewer subsequent spills of the remaining nodes.

Spill priority = 
(Uses+Defs outside loop) + 10 × (Uses+Defs within loop) 

Degree



4/10/2013

10

Single Cycle Implementation
Fetch Reg ALU Mem Reg

Fetch Reg ALU Mem Reg

Fetch Reg A

8 ns 8 ns

Each instruction can be done with a single 8 ns cycle

Time between the first and fourth instruction: 24 ns

For three Load instructions, it will take 3 * 8 = 24 ns 

Pipelined Implementation

Each step takes 2 ns (even register file access)  because the slowest step is 2 ns

Time between 1st and 4th instruction starting: 3 * 2 ns = 6 ns

Total time for the three instructions = 14 ns

Fetch Reg ALU Mem Reg

2 ns

Fetch Reg ALU Mem Reg

Fetch Reg ALU Mem Reg

Control Hazards
Control hazard: attempt to make a decision before condition is evaluated.

Branch instructions:
beq $1,$2,L0

add $4,$5,$6

...

L0: sub $7,$8,$9

Which instruction do we fetch next?

Make a guess that the branch is not taken. If we’re right, there’s no problem (no 
stalls). If we’re wrong…?

What would have been stalls if we waited for our comparison are now “wrong” 
instructions. We need to cancel them out and make sure they have no effect. 
These are called bubbles.

Branch Prediction
Attempt to predict the outcome of the branch before doing the comparison.

• Predict branch taken (fetch branch target instruction)

• Predict branch not taken (fetch fall through)

If wrong, we’ll need to squash the mispredicted instructions by setting their control 
signals to zero (no writes). This turns them into nops.

Times to do prediction:

• Static

• Compiler inserts hints into the instruction stream

• CPU predicts forward branches not taken and backwards branches 
taken

• Dynamic

• Try to do something in the CPU to guess better

Loop Unrolling
A tight loop may perform better if it is unrolled: where multiple loop iterations are 
replaced by multiple copies of the body in a row.

int x; 
for (x = 0; x < 100; x+=5)  
{

printf(“%d\n”, x);
printf(“%d\n”, x+1);
printf(“%d\n”, x+2);
printf(“%d\n”, x+3);
printf(“%d\n”, x+4);

}

int x;
for (x = 0; x < 100; x++)  
{

printf(“%d\n”, x);
}

Loop Unrolling
Benefits:

•Reduce branches and thus potentially mispredictions

•More instruction-level parallelism

Drawbacks:

•Code size increase can cause instruction cache pressure

•Increased register usage may result in spilling
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Duff’s Device
do {

*to = *from++;           

/* Note that the 'to' pointer 
is NOT incremented */

} while(--count > 0);

send(to, from, count)

register short *to, *from;

register count;

{

register n = (count + 7) / 8;

switch(count % 8) {

case 0: do { *to=*from++;

case 7:      *to=*from++;

case 6:      *to=*from++;

case 5:      *to=*from++;

case 4:      *to=*from++;

case 3:      *to=*from++;

case 2:      *to=*from++;

case 1:      *to=*from++;

} while(--n>0);

}

}


