Predictive Parsers

Can we avoid backtracking? Yes, if for a given input symbol and given nonterminal, we can choose the alternative appropriately.

This is possible if the first terminal of every alternative in a production is unique:
$\mathrm{A} \rightarrow \mathrm{a} B \mathrm{D} \mid \mathrm{b}$ B B
$B \rightarrow c \mid b c e$
D \rightarrow d
parsing an input "abced" has no backtracking

Left factoring to enable predication
$A \rightarrow \alpha \beta \mid \alpha \gamma$
change to
$A \rightarrow \alpha A^{\prime}$
$A^{\prime} \rightarrow \beta \mid \gamma$
For predicative parsers, must eliminate left recursion

LL(k) Parsing

LL(k)

- L — left to right scan
- L - leftmost derivation
- k - k symbols of lookahead
in practice, $\mathrm{k}=1$
It is table-driven and efficient.

LL(1) Parsing Algorithm

X - symbol at the top of the syntax stack
a - current input symbol
Parsing based on (\mathbf{X}, \mathbf{a}):
If $X=a=\$$, then
parser halts with "success"
If $X=a \neq \$$, then
pop X from stack and advance input head
If $X \neq a$, then
Case (a): if $X \in T$, then
parser halts with "failed," input rejected
Case (b): if $X \in N, M[X, a]=$ " $X \rightarrow$ RHS"
pop X and push RHS to stack in reverse order

Sample Parse Table

	int	*	+	$($)	\$
E	$\mathrm{E} \rightarrow \mathrm{TX}$			$\mathrm{E} \rightarrow \mathrm{TX}$		
X			$\mathrm{X} \rightarrow+\mathrm{E}$		$\mathrm{X} \rightarrow \varepsilon$	$\mathrm{X} \rightarrow \varepsilon$
T	$\mathrm{T} \rightarrow$ int Y			$\mathrm{T} \rightarrow(\mathrm{E})$		
Y		$\mathrm{Y} \rightarrow \star \mathrm{T}$	$\mathrm{Y} \rightarrow \varepsilon$		$\mathrm{Y} \rightarrow \varepsilon$	$\mathrm{Y} \rightarrow \varepsilon$

Implementation with 2-D parse table:

- A row for each non-terminal

A column for all possible terminals and \$ (the end of input marker)

- Every table entry contains at most one production
- Required for a grammar to be LL(1)
- No backtracking

Fixed action for each (non-terminal, input symbol) combination

Push RHS in Reverse Order

X - symbol at the top of the syntax stack
a - current input symbol
if $\mathrm{M}[\mathrm{X}, \mathrm{a}]=$ " $\mathrm{X} \rightarrow \mathrm{B} \subset \mathrm{C}$ ":

LL(1) Grammars

Remove left recursive and perform left factoring

Given the grammar:
$\mathrm{E} \rightarrow \mathrm{T}+\mathrm{E} \mid \mathrm{T}$
$T \rightarrow$ int * T int $\mid(E)$
The grammar has no left recursion but requires left factoring

After rewriting grammar, we have:
$E \rightarrow T X$
$\mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon$
$\mathrm{T} \rightarrow$ int $Y \mid(E)$
$Y \rightarrow$ * $T \mid \varepsilon$

LL(1) Parsing

Parse table

LL(1) Parsing

LL(1) Parsing

Parse table

LL(1) Parsing

Parse table

LL(1) Parsing

Constructing the Parse Table

We need to know what non-terminals to place our productions in the table?
We know that we have restricted our grammars so that left recursion is eliminated and they have been left factored. That means that each production is uniquely recognizable by the first terminal that production would derive

Thus, we can construct our table from 2 sets:

- For each symbol A, the set of terminals that can begin a string derived from A. This set is called the FIRST set of A
- For each non-terminal A , the set of terminals that can appear after a string derived from A is called the FOLLOW set of A

First(α)

First $(\alpha)=$ set of terminals that start string of terminals derived from α.
Apply following rules until no terminal or ε can be added

1. If $t \in T$, then $\operatorname{First}(t)=\{t\}$. For example First $(+)=\{+\}$
2. If $X \in N$ and $X \rightarrow \varepsilon$ exists (nullable), then add ε to $\operatorname{First}(X)$. For example, First $(Y)=\left\{{ }^{*}, \varepsilon\right\}$.
3. If $X \in N$ and $X \rightarrow Y_{1} Y_{2} Y_{3} \ldots Y_{m}$, where $Y_{1}, Y_{2}, Y_{3}, \ldots Y_{m}$ are non terminals, then:
for each i from 1 to m
if $Y_{1} \ldots Y_{i-1}$ are all nullable (or if $i=1$) $\operatorname{First}(X)=\operatorname{First}(X) \cup \operatorname{First}\left(Y_{i}\right)$

Follow(α)

Follow $(\alpha)=\left\{t \mid S \Rightarrow^{*} \alpha \mathrm{t} \beta\right\}$

- Intuition: if $X \rightarrow A$ B, then $\operatorname{First}(B) \subseteq \operatorname{Follow}(A)$
- However, B may be ε, i.e., $\beta \stackrel{*}{\Rightarrow} \varepsilon$

Apply following rules until no terminal or ε can be added

1. $\$ \in$ Follow(S), where S is the start symbol.
e.g., Follow(E) $=\{\$ \ldots\}$.
2. Look at the occurrence of a non-terminal on the right hand side of a production which is followed by something If $A \rightarrow \alpha B \beta$, then $\operatorname{First}(\beta)-\{\varepsilon\} \subseteq$ Follow(B)
3. Look at N on the RHS that is not followed by anything if $(A \rightarrow \alpha B)$ or $(A \rightarrow \alpha B \beta$ and $\varepsilon \in \operatorname{First}(\beta))$ then Follow $(A) \subseteq$ Follow (B)

Algorithm to Compute FIRST, FOLLOW, and nullable

Initialize FIRST and FOLLOW to all empty sets, and nullable to all false.
foreach terminal symbol z
do
foreach production $\mathrm{X} \rightarrow \mathrm{Y}_{1} \mathrm{Y}_{2} \ldots \mathrm{Y}_{k}$
if $Y_{1} \ldots Y_{k}$ are all nullable (or if $k=0$)
then nullable $[\mathrm{X}] \leftarrow$ true
foreach i from 1 to k, each j from $i+1$ to k
if $Y_{1} \ldots Y_{i-1}$ are all nullable (or if $i=1$)
then FIRST $[\mathrm{X}] \leftarrow$ FIRST $[\mathrm{X}] \quad \mathrm{U}$ FIRST $\left[\mathrm{Y}_{\mathrm{i}}\right.$]
if $Y_{i+1} \ldots Y_{k}$ are all nullable (or if $i=k$)
then FOLLOW $\left[Y_{i}\right] ~ \leftarrow F O L L O W\left[Y_{i}\right] U$ FOLLOW $[X]$
if $Y_{i+1} \ldots Y_{j-1}$ are all nullable (or if $i+1=j$)
then FOLLOW $\left[Y_{i}\right] \leftarrow \operatorname{FOLLOW}\left[Y_{i}\right] \cup \operatorname{FIRST}\left[Y_{j}\right.$
until FIRST, FOLLOW, and nullable did not change in this iteration.

Example

Grammar: $\mathrm{E} \rightarrow \mathrm{T} \mathrm{X}$	Symbol	First	Follow
	Symbol		Follow
$\mathrm{X} \rightarrow+\mathrm{E} \mid \varepsilon$	((
$\mathrm{T} \rightarrow$ int $\mathrm{Y} \mid$ (E)))	
$\mathrm{Y} \rightarrow$ * $\mathrm{T} \mid \varepsilon$	+	+	
	*	*	
First Set: Follow Set: $\mathrm{E} \rightarrow \mathrm{T} X$ $\$$	int	Int	
	Y	*, ε	\$,), +
$\mathrm{X} \rightarrow+\mathrm{E} \quad \mathrm{E} \rightarrow \mathrm{T} X$	X	+, ε	\$,)
$\begin{array}{ll} \mathrm{X} \rightarrow \varepsilon & \mathrm{X} \rightarrow+\mathrm{E} \\ \mathrm{~T} \rightarrow \text { int } \mathrm{Y} & \mathrm{~T} \rightarrow \text { int } \mathrm{Y} \end{array}$	T	(, int	\$,), +
$T \rightarrow(E) \quad T \rightarrow(E)$	E	(, int	\$,)
$\mathrm{Y} \rightarrow$			

Constructing LL(1) Parse Table
To construct the parse table, we check each $\mathrm{A} \rightarrow \alpha$ - For each terminal $a \in \operatorname{First}(\alpha)$, add $A \rightarrow \alpha$ to $M[A, \alpha]$. - If $\varepsilon \in \operatorname{First}(\alpha)$, then for each terminal $\mathrm{b} \in \operatorname{Follow}(\mathrm{A})$, - $\operatorname{add} \mathrm{A} \rightarrow \alpha$ to M[A, α]. - If $\varepsilon \in \operatorname{First}(\alpha)$ and $\$ \in \operatorname{Follow}(A)$, then $\operatorname{add} A \rightarrow \alpha$ to $M[A, \$]$.

Is a Grammar LL(1)?

Observation

If a grammar is $\operatorname{LL}(1)$, then each of its $\operatorname{LL}(1)$ table entries contain at most one rule. Otherwise, it is not LL(1)

Two methods to determine if a grammar is $\operatorname{LL}(1)$ or not:

1. Construct $\operatorname{LL}(1)$ table, and check if there is a multi-rule entry
or
2. Check each rule as if the table were being constructed:

G is LL1(1) iff for a rule $A \rightarrow \alpha \mid \beta$
a) $\operatorname{First}(\alpha) \cap \operatorname{First}(\beta)=\varnothing$
b) at most one of α and β can derive ε
c) If β derives ε, then $\operatorname{First}(\alpha) \cap \operatorname{Follow}(\beta)=\varnothing$

Constructing LL(1) Parse Table

Ambiguous Grammars

Some grammars may need more than one token of lookahead (k). However, some grammars are not LL regardless of how the grammar is changed.
$S \rightarrow$ if C then S | if C then S else S | ..
$\mathrm{C} \rightarrow \mathrm{b}$
change to
$S \rightarrow$ if C then S X । ...
$\mathrm{X} \rightarrow$ else S | ε
$\mathrm{C} \rightarrow \mathrm{b}$
problem sentence: "if b then if b then a else a "
"else" $\in \operatorname{First}(\mathrm{X})$
First(X)- $\varepsilon \subseteq$ Follow(S)
$X \rightarrow$ else $\ldots \mid \varepsilon$
"else" $\in \operatorname{Follow}(X)$
To remove ambiguity, it is possible to rewrite the grammar.
For the "if-then-else" example, how to rewrite?
May not even need to rewrite in this case, we can just use the $\mathrm{x} \rightarrow$ else s

production over the $\mathrm{x} \rightarrow \varepsilon$ \begin{tabular}{l}
However, by changing the grammar,

- It might make the other phases of the compiler more difficult

- It becomes harder to determine semantics and generate code

- It is less appealing to programmers
\end{tabular}

LL(1) Summary

$\mathrm{LL}(1)$ parsers operate in linear time and at most linear space relative to the length of input because:

Time - each input symbol is processed constant number of times

Space - stack is smaller than the input (in case we remove $\mathrm{X} \rightarrow \varepsilon$)

Summary

First and Follow sets are used to construct predictive parsing tables

Intuitively, First and Follow sets guide the choice of rules:

- For non-terminal \mathbf{A} and input \mathbf{t}, use a production rule $\mathrm{A} \rightarrow \alpha$ where $\mathbf{t} \in$ First(α)
- For non-terminal \mathbf{A} and input \mathbf{t}, if $\mathrm{A} \rightarrow \alpha$ and $\mathrm{t} \in \operatorname{Follow}(\mathrm{A})$, use the production $A \rightarrow \alpha$ where $\varepsilon \in \operatorname{First}(\alpha)$

What is LL(0)?
Why are $\operatorname{LL}(2) \ldots \operatorname{LL}(k)$ are not widely used ?

