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A “Bad” Name
Optimization is the process by which we turn a program into a better one, for some 
definition of better.

This is impossible in the general case.

For instance, a fully optimizing compiler for size must be able to recognize all 
sequences of code that are infinite loops with no output, so that it can replace it 
with a one-instruction infinite loop.

This means we must solve the halting problem.

So, what can we do instead?

Optimization
An optimizing compiler transforms P into a program P’ that always has the same 
input/output behavior as P, and might be smaller or faster.

Optimizations are code or data transformations which typically result in improved 
performance, memory usage, power consumption, etc.

Optimizations applied naively may sometimes result in code that performs worse.

We saw one potential optimization before, loop interchange, where we decide to 
change the order of loop headers in order to get better cache locality. However, 
this may result in worse overall performance if the resulting code must do more 
work and the arrays were small enough to fit in the cache regardless of the order.

Register Allocation
Register allocation is also an optimization as we previously discussed.

On register-register machines, we avoid the cost of memory accesses anytime we 
can keep the result of one computation available in a register to be used as an 
operand to a subsequent instruction.

Good register allocators also do coalescing which eliminates move instructions, 
making the code smaller and faster.

Dataflow Analyses

Reaching Definitions
Does a particular value t directly affect the value of t at another point in the 
program?

Given an unambiguous definition d, 
t ← a ⊕ b 

or
t ← M[a]

we say that d reaches a statement u in the program if there is some path in the 
CFG from d to u that does not contain any unambiguous definition of t.

An ambiguous definition is a statement that might or might not assign a value to t, 
such as a call with pointer parameters or globals. MiniJava will not register 
allocate these, and so we can ignore the issue.
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Reaching Definitions
We label every move statement with a definition ID, and we manipulate sets of 
definition IDs.

We say that the statement 
d1: t ← x ⊕ y

generates the definition d1, because no matter what other definitions reach the 
beginning of this statement, we know that d1 reaches the end of it.

This statement kills any other definition of t, because no matter what other 
definitions of t reach the beginning of the statement, they cannot directly affect the 
value of t after this statement.

Reaching Definitions

	
∈

∪

This looks familiar, but is the reverse of our liveness calculations. 

We solve it using iteration the same as with liveness.

Available Expressions
An expression:

x ⊕ y 

is available at a node n in the flow graph if, on every path from the entry node of 
the graph to node n, x ⊕ y is computed at least once and there are no 
definitions of x or y since the most recent occurrence of x ⊕ y on that path.

Any node that computes x ⊕ y generates {x ⊕ y}, and any definition of x or 
y kills {x ⊕ y}.

A store instruction (M[a] ← b) might modify any memory location, so it kills any 
fetch expression (M[x]). If we were sure that a = x, we could be less conservative, 
and say that M[a] ← b does not kill M[x]. This is called alias analysis.

Available Expressions

	
∈

∪

Compute this by iteration.

Define the in set of the start node as empty, and initialize all other sets to full (the 
set of all expressions), not empty. 

Intersection makes sets smaller, not bigger.

Reaching Expressions
We say that an expression:

t ← x ⊕ y 

(in node s of the flow graph) reaches node n if there is a path from s to n that does 
not go through any assignment to x or y, or through any computation of x ⊕ y. 

Dataflow Optimizations
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Common Subexpression Elim
Compute reaching expressions, that is, find statements of the form 

n: v ← x ⊕ y

such that the path from n to s does not compute x ⊕ y or define x or y.

Choose a new temporary w, and for such n, rewrite as:
n: w ← x ⊕ y

n': v ← w

Finally, modify statement s to be:
s: t ← w

We will rely on copy propagation to remove some or all of the extra assignment

quadruples.

Constant Propagation
Suppose we have a statement d:

t ← c

where c is a constant, 

and another statement n that uses t: 
y ← t ⊕ x

We know that t is constant in n if d reaches n, and no other definitions of t reach n.

In this case, we can rewrite n as:
y ← c ⊕ x

Copy Propagation
This is like constant propagation, but instead of a constant c we have a variable z.

Suppose we have a statement:
d: t ← z

and another statement n that uses t, such as:
n: y ← t ⊕ x

If d reaches n, and no other definition of t reaches n, and there is no definition of z 
on any path from d to n (including a path that goes through n one or more times), 
then we can rewrite n as:

n: y ← z ⊕ x

Dead-code Elimination
If there is a quadruple 

s : a ← b ⊕ c 

or 
s : a ← M[x] 

such that a is not live-out of s, then the quadruple can be deleted.

Some instructions have implicit side effects such as raising an exception on 
overflow or division by zero. The deletion of those instructions will change the 
behavior of the program.

The optimizer shouldn’t always do this. Optimizations that eliminate even 
seemingly harmless runtime behavior cause unpredictable behavior of the 
program. A program debugged with optimizations on may fail with them disabled.

Loop Optimizations

Single Cycle Implementation
Fetch Reg ALU Mem Reg

Fetch Reg ALU Mem Reg

Fetch Reg A

8 ns 8 ns

Each instruction can be done with a single 8 ns cycle

Time between the first and fourth instruction: 24 ns

For three Load instructions, it will take 3 * 8 = 24 ns 
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Pipelined Implementation

Each step takes 2 ns (even register file access)  because the slowest step is 2 ns

Time between 1st and 4th instruction starting: 3 * 2 ns = 6 ns

Total time for the three instructions = 14 ns

Fetch Reg ALU Mem Reg

2 ns

Fetch Reg ALU Mem Reg

Fetch Reg ALU Mem Reg

Control Hazards
Control hazard: attempt to make a decision before condition is evaluated.

Branch instructions:
beq $1,$2,L0

add $4,$5,$6

...

L0: sub $7,$8,$9

Which instruction do we fetch next?

Make a guess that the branch is not taken. If we’re right, there’s no problem (no 
stalls). If we’re wrong…?

What would have been stalls if we waited for our comparison are now “wrong” 
instructions. We need to cancel them out and make sure they have no effect. 
These are called bubbles.

Branch Prediction
Attempt to predict the outcome of the branch before doing the comparison.

• Predict branch taken (fetch branch target instruction)

• Predict branch not taken (fetch fall through)

If wrong, we’ll need to squash the mispredicted instructions by setting their control 
signals to zero (no writes). This turns them into nops.

Times to do prediction:

• Static

• Compiler inserts hints into the instruction stream

• CPU predicts forward branches not taken and backwards branches 
taken

• Dynamic

• Try to do something in the CPU to guess better

Dynamic Branch Prediction
Use a branch’s history to predict the next time it is executed.

Consider a loop that executes 10 times. The first 9 iterations, we can statically 
predict that the backwards edge of our loop is taken correctly. However, on the 
final iteration, we take the fall through and our forward branch is mispredicted. Our 
accuracy is 90%.

A 1-bit predictor remembers the taken/not-taken status of a branch in the past. It 
uses that to predict the branch the next time it is encountered. In our example, this 
would work the same as a static prediction.

A Branch Target Buffer might remember more history. For instance, a 16-entry 
branch target buffer in our previous example could store all 10 iterations. If we 
encounter the same loop again, we will predict it with 100% accuracy.

Loop Unrolling
A tight loop may perform better if it is unrolled: where multiple loop iterations are 
replaced by multiple copies of the body in a row.

int x; 
for (x = 0; x < 100; x+=5)  
{

printf(“%d\n”, x);
printf(“%d\n”, x+1);
printf(“%d\n”, x+2);
printf(“%d\n”, x+3);
printf(“%d\n”, x+4);

}

int x;
for (x = 0; x < 100; x++)  
{

printf(“%d\n”, x);
}

Loop Unrolling
Benefits:

•Reduce branches and thus potentially mispredictions

•More instruction-level parallelism

Drawbacks:

•Code size increase can cause instruction cache pressure

•Increased register usage may result in spilling
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Duff’s Device
do {

*to = *from++;           

/* Note that the 'to' pointer 
is NOT incremented */

} while(--count > 0);

send(to, from, count)

register short *to, *from;

register count;

{

register n = (count + 7) / 8;

switch(count % 8) {

case 0: do { *to=*from++;

case 7:      *to=*from++;

case 6:      *to=*from++;

case 5:      *to=*from++;

case 4:      *to=*from++;

case 3:      *to=*from++;

case 2:      *to=*from++;

case 1:      *to=*from++;

} while(--n>0);

}

}

Strength Reduction
Certain machine instructions are more expensive than others. One classic 
example is multiplication being 30ish cycles while addition and shifting are just 1 
cycle.

Strength reduction replaces a more expensive operation with a cheaper one.

In the simplest case, we can replace multiplications with shifts (taking care to deal 
with the rounding of negative numbers correctly).

In the general case, we can accumulate a multiplied value each iteration in a 
method reminiscent of Horner’s method.

Method Optimizations

Method Inlining
Method inlining replaces a function call site with the body of the callee. 

Example:

int max(int a, int b) {

if(a > b) return a;

else return b;

}

int main() {

int x = 3;

int y = 5;

int z = max(x,y);

}

int main() {
int x = 3;
int y = 5;
int z;
if(x > y) z = x;
else z = y;

}

Method Inlining
Benefits:

• Less dynamic instructions

• Call site removed, prologue and epilogue code eliminated

• Smaller dynamic memory needs since the activation record is eliminated

• Removal of control flow transfer helps eliminate branch penalties and 
improves instruction cache locality

• After inlining is performed, more code is available to the optimizer to 
improve

Disadvantages:

• Static code size increase is likely

• Code growth can impact instruction cache performance

• May increase register pressure

Method Inlining
In languages like C++, there is a keyword inline that hints to the compiler that a 
method should be inlined during compilation.

In C, this is one of the benefits of using a parameterized #define macro.

In OOPLs, we often have very small methods (usually acting as accessors and 
mutators) that can be inlined.

Inlining is not always the right thing to do, and so the compiler must use heuristics 
to decide to apply it or not.

Unknown depth recursion makes inlining difficult.
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Tail Recursion Elimination
A tail call is a function call site that appears as the last statement in a function.

Example:

int factorial(int x) {

if(x < 2) return 1;

return x * fact(x-1);

}

Tail calls can be implemented without adding a new activation record to the stack.

The activation record of the original call is reused, substituting in the new 
parameter values as appropriate. The tail call is then replaced with a jump to the 
beginning of the function.

Runtime Optimization

Just-in-time Compilation
Just-in-time (JIT) compilers are software dynamic translators that convert one 
language into another at runtime, when a segment of code (often a method) is 
needed.

JIT compilers can be used to support dynamic languages which are not 
traditionally compiled such as JavaScript or to support languages compiled into 
platform-independent bytecode, like Java.

Since the JIT compiler serves as a runtime environment, we can access dynamic  
properties of the program in order to better optimize it.

Java
class EvenOdd {

public static void main(String args[]) {

long evenSum=0, oddSum=0;

for(int i=0;i<1000000;i++) {

if(i%2 == 0) {

evenSum+=i;

}

else {

oddSum+=i;

}

}

System.out.println("Even sum: " + evenSum);

System.out.println("Odd sum: " + oddSum);

}

}

Bytecode
00 : lconst_0

01 : lstore_1

02 : lconst_0

03 : lstore_3

04 : iconst_0

05 : istore local.05

07 : iload local.05

09 : ldc 1

0B : if_icmpge pos.2A

0E : iload local.05

10 : iconst_2

11 : irem

12 : ifne pos.1E

15 : lload_1

16 : iload local.05

18 : i2l

19 : ladd

1A : lstore_1

1B : goto pos.24

1E : lload_3

1F : iload local.05

21 : i2l

22 : ladd

Bytecode
23 : lstore_3

24 : iinc local.05, 1

27 : goto pos.07

2A : getstatic java.io.PrintStream java.lang.System.out

2D : new                 java.lang.StringBuilder

30 : dup

31 : invokespecial void java.lang.StringBuilder.<init>()

34 : ldc "Even sum: "

36 : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(java.lang.String)

39 : lload_1

3A : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(long)

3D : invokevirtual java.lang.String java.lang.StringBuilder.toString()

40 : invokevirtual void java.io.PrintStream.println(java.lang.String)

43 : getstatic java.io.PrintStream java.lang.System.out

46 : new                 java.lang.StringBuilder

49 : dup

4A : invokespecial void java.lang.StringBuilder.<init>()

4D : ldc "Odd sum: "

4F : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(java.lang.String)

52 : lload_3

53 : invokevirtual java.lang.StringBuilder java.lang.StringBuilder.append(long)

56 : invokevirtual java.lang.String java.lang.StringBuilder.toString()

59 : invokevirtual void java.io.PrintStream.println(java.lang.String)

5C : return
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Adaptive Optimization
Consider a JIT-compiler as part of a Java Virtual Machine (JVM).

Java Bytecode is a stack-oriented machine language. The JVM can use 
interpretation to implement the virtual CPU for Java Bytecode.

However, this interpretation is slow.

One option is to use JIT compilation to convert the bytecode into machine code.

However, compilation can be slow as well.

We have two ideas:

1. Apply cheap yet effective optimizations

2. Apply optimization only to regions that will benefit from it

Cost-Benefit Analysis
Let us only apply optimization O to method M if the time gained from the 
optimization is greater than the cost of doing the optimization.

cost(M’ = O(M)) < (cost(M) - cost(M’))

We need models of cost for both the optimization and the optimized method. How 
can we know?

For the cost of the optimization, we can base this on the complexity of the method 
and the average-case complexity of the algorithm O.

For the cost of the optimized method M’, we must be able to predict the future.

To do this, we can look at the past.

Profiling
We can generate a profile of method M to identify how “hot” it is. That is, how 
much time has been spent in the method so far by inserting instrumentation into 
the method code during compilation or interpretation to see how much time is 
spent in that code.

Execution time typically follows the Pareto Principle (the 80/20 or 90/10 rule):

90%(80%) of the time is spent in 10%(20%) of the code.

Let us only optimize those methods where we are likely to gain the most.

Choice of Optimizations
Let us then define an adaptive optimization scheme. Each time a method reaches 
a certain level of hotness, recompile it at the next level.

For instance, a Java Adaptive Optimizer might have 4 or 5 levels:

Level 0: no optimization, potentially even interpretation

Level 1: Baseline JIT, naïve code that still mimics the stack-based nature of the 
bytecode

Level 2: Do register allocation to remove as many of the operand stack loads and 
stores as possible

Level 3: Apply some basic control and dataflow optimizations

Level 4: Aggressively optimize the code

This is how the Java HotSpot compiler and Jikes Research Virtual Machine work.


