
12/12/2012

1

CS 1622:
Object-Oriented Languages

Jonathan Misurda

jmisurda@cs.pitt.edu

What is an Object?
Objects combine data and code as well as provide three things:

1. Polymorphism

2. Encapsulation

3. Inheritance

We will focus first on data and then move on to the methods.

Without inheritance, object data can be seen as a record type much like a struct
in C.

Record Types
struct person {

char name[10];

int age;

};

A record type is an aggregation of data contiguously laid out in memory with fields
usually given distinct names (instead of numerical indices as with arrays).

Each field is located at an offset from the beginning of the memory allocation.

We can hold this information about a type in its symbol table entry.

Offsets
struct person {

char name[10];

int age;

};

For this struct, we might produce this memory layout:

However, int age would not begin at an address of a multiple of 4, which can be
a problem on architectures like MIPS.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

+0, name +10, age

Padding for Alignment
struct person {

char name[10];

int age;

};

We can force this to fit our memory alignment requirements by adding wasted
padding bytes:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

+0, name Padding +12, age

Allocation
The declaration of a record type or object is just a template that guides the
construction of one during runtime.

In C, structs can be allocated in one of three areas: the global data segment, the
stack, or the heap.

In Java/MiniJava, objects can only be allocated via new on the heap.

Since the record types are contiguous, the allocation can be done all at once, with
the proper size including the padding bytes for alignment.

Dynamic instances of the records or objects should be cleaned up by returning
from the method (for stack allocated structs) or by calling free() (for malloc()),
or by doing garbage collection.

12/12/2012

2

Initialization
Different languages have different rules about the default initialization of record
types.

In C, a global is initialized to zero, stack and heap allocations are not initialized.

In Java, all objects are initialized to zero (0, 0.0, false, null).

Access
struct person {

char name[10];

int age;

};

C Code:

struct person *bob;

bob = malloc(sizeof(struct person));

bob.age = 20;

MIPS code:

li $a0, 16

call malloc

li $t0, 20

lw $t0, 12($v0)

person
Type: struct person
Size: 16

name
Type: char
Size: 10
Offset: 0

age
Type: int
Size: 4
Offset: 12

Inheritance
In Object Oriented Languages, we can extend an object (a base class) and add
new fields to it to create a derived class.

Some OO Languages restrict the inheritance relationship so that a given class
may only have one parent class. This is the single inheritance model of Java.

Other OO Languages allow the composition of many base classes into a derived
class. This is multiple inheritance in languages like C++.

Single Inheritance
The base class of a derived class has a set of fields with their associated offsets in
memory.

We can often refer to a derived class via a base class pointer and access those
fields:

Base b = new Derived();

b.fieldFromBase = 7;

How should we lay out the derived class so that this is still possible?

Prefixing for Single Inheritance
class A {

int a = 0;

}

class B extends A {

int b = 0;

int c = 0;

}

class C extends B {

int d = 0;

}

A

a

B

a

b

c

C

a

b

c

d

Multiple Inheritance
In multiple inheritance, we may have several base classes for a single derived
class. Since each base class may have its own fields, we cannot simply use
prefixing to prepend the base classes to the derived class’s data.

class A {

int a = 0;

}

class B {

int b = 0;

int c = 0;

}

class C extends A, B {

int d = 0;

}

12/12/2012

3

Graph Coloring
Instead, we could create a set of non-overlapping offsets where certain spaces are
left empty so that when overlaid, the derived class has the same offset locations
as its base classes.

Since this is using the inheritance graph to determine interference, we can use
graph coloring to “color” the offsets of the fields.

However, this only works if we know the fields at link time, dynamic loading can
cause this to not work.

Graph Coloring
class A {

int a = 0;

}

class B {

int b = 0;

int c = 0;

}

class C extends A, B {

int d = 0;

}

A

a

B

b

c

C

a

b

c

d

Graph Coloring
Unfortunately, this approach can waste a lot of space per instance of an object.

Since there are likely to be many more instances than objects, we could instead
use a descriptor table associated with the object to determine the field location in
each instance.

This results in additional runtime work as we must load the descriptor’s address,
index it, and then use the resulting value to index the object in the instance.

Hopefully, however, the descriptor is loaded a small number of times and can be
reused during any processing of an instance.

Static Data
Static data items exist independently of any instance of the class.

It then seems unlikely to store this data in the instances of the objects.

We could have a dedicated space to store the static fields (such as the global data
segment) or we could use the descriptor table to point to a single location in
memory where the static data lives.

Encapsulation
Public, private, protected, and package (default) scopes allow us to hide data
items and ensure that their access goes through accessor and mutator functions.

Since these are about visibility and not a property of the machine, this is a
compile-time construct that must be enforced by the type-checker during semantic
analysis.

Methods
Methods are generally not stored in or near the object instances but rather turn
into machine code as functions in non-OO languages do.

The major difference is that non-static methods then need to be able to find the
instanced data that they are supposed to access and manipulate.

This is typically done through a hidden “this” pointer that is treated as an implicit
parameter to the method:

a.f(c) becomes f(a, c) where a is referred to as this inside the body of f.

This can be considered a precolored node in the interference graph with the color
of the first argument (such as $a0 in MIPS). It interferes with everything up until
the last use (implicitly or explicitly) of this.

12/12/2012

4

Implicit this
class A {

int a = 0;

void f() {

a = 0; // this.a

g(); // this.g() → g(this)

}

void g() {

…

}

}

Static Methods
If we wish to invoke a static method, it simply involves finding the right method
based upon the type of object it is being called upon, not the type of the instance
of the object.

At compile time, the call can simply be resolved to the appropriate label to jump to.

Dynamic Methods
When the type of the object determines which function should be called at runtime,
we need a facility for the dynamic invocation of a method rather than depending
on the compiler generating an appropriate label.

To this end, we can use our descriptor table as we did for object fields.

For multiple inheritance, global graph coloring works well.

Instanceof
At runtime, we may wish to determine whether a particular instance is a given
object.

We can use the descriptors as a tag to determine the type.

Since we also have “is-a” membership for base classes, we potentially have to
look in each of our base class’s descriptors for the type as well.

Typecasts
Static casts like C++ has may allow for unchecked runtime behavior that results in
incorrect execution.

Runtime casts like Java and C++’s dynamic_cast require runtime checks to
ensure that the type coercion is a safe one to perform.

