Implementing Lexical Analyzers

Finite Automata

```
For lexical analysis:
```

- Specification - Regular expression
- Implementation - Finite automata

A finite automata consists of 5 components: ($\Sigma, \mathrm{S}, \mathrm{n}, \mathrm{F}, \delta$)

1. An input alphabet, Σ
2. A set of states, S
3. A start state, $n \in S$
4. A set of accepting states $F \subseteq S$
5. A set of transitions, $\delta: \mathrm{s}_{\mathrm{a}} \xrightarrow{\text { input }} \mathrm{s}_{\mathrm{b}}$

Finite Automata

Transition $\delta: \mathrm{s}_{\mathrm{a}} \xrightarrow{\text { input }} \mathrm{s}_{\mathrm{b}}$
This is read as "In state S_{a}, go to state S_{b}, when input is encountered"

At the end of the input (or when no transition is possible), if in current state X

- If $X \in$ accepting set F, then accept
- otherwise, reject

We sometimes prefer to use graphical representations of finite automata, known as a state graph.

State Graph Symbols

Examples

What language does this recognize? (Alphabet $=\{0,1\}$)
Two or more 0s in a row at the end of the input

Regex: 00^{*} or $00+$ or $0\{2$,

Table Implementation

Epsilon Transitions

Another kind of transition: ε - transition

- Machine can move from state A to state B without reading any input

DFA \& NFAs

```
Deterministic Finite Automata (DFA):
    - One transition per input per state
    - No \varepsilon-moves
    Non-deterministic Finite Automata (NFA):
    - Can have multiple transitions for one input in a given state
    - Can have \varepsilon-moves
```

 Finite automata have finite memory
 - Need only to encode the current state

Converting REs to NFAs

Thompson's Algorithm

REs can be converted to NFAs. Atomic REs are straightforward.

Epsilon transitions

Single characters:

Converting REs to NFAs

Alternation:
$\mathrm{N}_{1} \mid \mathrm{N}_{2}$

Concatenation:
$\mathrm{N}_{1} \mathrm{~N}_{2}$

Converting REs to NFAs

Kleene Closure:
$\mathrm{N}_{1}{ }^{*}$

Example

Convert (a|b)*ab to an NFA

Step 1: a

Example

Convert (alb) *ab to an NFA

Step 3: $(a \mid b)$

Executing Finite Automata

A DFA can take only one path through the state graph

- Completely determined by input

A NFA can take multiple paths "simultaneously"

- NFAs make ε-transitions
- There may be multiple transitions out of a state for a single input
- Rule: the NFA accepts it if can get into a final state by any path

Which is more powerful, an NFA or a DFA?

Example

NFA and DFA that accept ($a \mid b$) *ab

NFA to DFA Conversion

Basic idea: Given a NFA, simulate its execution using a DFA

- At step n, the NFA may be in any of multiple possible states

The new DFA is constructed as follows:

- The states of the DFA correspond to a non-empty subset of states of the NFA
- The DFA's start state is the set of NFA states reachable through ε transitions from NFA start state
- A transition $\mathrm{S}_{\mathrm{a}} \xrightarrow{\mathrm{c}} \mathrm{S}_{\mathrm{b}}$ is added iff S_{b} is the set of NFA states reachable from any state in S_{a} after seeing the input c, also considering ε transitions

Epsilon-Closure

Let edge(s,c) be the set of all NFA states reachable by following a single edge with label c from state s.

For a set of states S, ε-closure(S) is the set of states that can be reached from a state in S via ε-transitions.

$$
\varepsilon-\operatorname{Closure}(S)=S \cup\left(\bigcup_{s \in T} \operatorname{edge}(s, \varepsilon)\right)
$$

```
function \varepsilon-closure(S)
    T}\leftarrow
    repeat
        T'\leftarrowT
        T= T' }\cup(\mp@subsup{U}{s\inT}{\prime},\operatorname{edge}(s,\varepsilon)
    until T=T
    return T
```


NFA to DFA Conversion Example

Start state $=\varepsilon$-closure $\left(\mathrm{S}_{0}\right)=\{0,1,2,4,7\}=\mathrm{A}$
We'll call this collection of states A, and will be a new node in our DFA that is our DFA start state.

Name $\{0,1,2,4,7\} \quad A$

Construct DFA

We now compute where we can go from A on each input in our alphabet.
On an 'a', considering each state in A, where might we end up? An a would take us from 2 to 3 and from 7 to 8 . But we must consider our ε-transitions as well.
$B=\varepsilon$-closure $(3) \cup \varepsilon$-closure $(8)=\{1,2,3,4,6,7\} \cup\{8\}$

Set	Name
$\{0,1,2,4,7\}$	A
$\{1,2,3,4,6,7,8\}$	B

Construct DFA

On an 'b', considering each state in A, we could go to 5 , but we must do the ε closure.
$C=\varepsilon$-closure $(5)=\{1,2,4,5,6,7\}$

Construct DFA

Construct DFA

Repeat process for D :
In D, see an ' a ' $=\{1,2,3,4,6,7,8\}=B$
In D, see a'b' $=\{1,2,4,5,6,7\}=C$

Set	Name
$\{0,1,2,4,7\}$	A
$\{1,2,3,4,6,7,8\}$	B
$\{1,2,4,5,6,7\}$	C
$\{1,2,4,5,6,7,9\}$	D

NFA to DFA Remarks

This algorithm does not produce a minimal DFA.
It does however, exclude states that are not reachable from the start state.
This is important because an n-state NFA could have 2^{n} states as a DFA.
(Why? Set of all subsets.)
The minimization algorithm is left to the graduate course.

Construct DFA

Repeat process for C
In C, see an ' a ' $=\{1,2,3,4,6,7,8\}=B$
In C , see $\mathrm{a} ~ ' b '=\{1,2,4,5,6,7\}=C$ (Self loop)

Set	Name
$\{0,1,2,4,7\}$	A
$\{1,2,3,4,6,7,8\}$	B
$\{1,2,4,5,6,7\}$	C
$\{1,2,4,5,6,7,9\}$	D

DFA Final States

A state in the DFA is final if one of the states in the set of NFA states is final.

Why DFAs?

Why'd we do all that work?
A DFA can be implemented by a 2D table T:

- One dimension is states, the other dimension is input characters
- For $\mathrm{Sa}_{\mathrm{a}} \xrightarrow{\mathrm{c}} \mathrm{S}_{\mathrm{b}}$ we have $\mathrm{T}\left[\mathrm{S}_{\mathrm{a}}, \mathrm{c}\right]=\mathrm{S}_{\mathrm{b}}$

DFA execution:

- If the current state is S_{a} and input is c, then read $T\left[S_{a}, c\right]$
- Update the current state to S_{b}, assuming $\mathrm{S}_{\mathrm{b}}=\mathrm{T}\left[\mathrm{S}_{\mathrm{a}}, \mathrm{c}\right]$
- This is very efficient

Automating Automatons

If we have algorithmic ways to convert REs to NFAs and to convert NFAs to faster DFAs, we could have a program where we write our lexical rules using REs and automatically have a table-driven lexer produced.

NFA to DFA conversion is the heart of automated tools such as lex/flex/JLex/Jflex - DFA could be very large

- In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

Implementation

RE \rightarrow NFA \rightarrow DFA \rightarrow Table-driven Implementation

- Specify lexical structure using regular expressions

Finite automata

- Deterministic Finite Automata (DFAs)
- Non-deterministic Finite Automata (NFAs) Table implementation

Ambiguity Resolution

Imagine a rule for C identifiers:
[a-zA-Z_][a-zA-Z0-9_] *
And the rule for a keyword such as if:
"if"
How do we resolve the fact that if is a keyword and if8 is an identifier?
Two rules:

1. Longest match - The match with the longest string will be chosen.
2. Rule priority - for two matches of the same length, the first regex will be chosen. I.e., Rule order matters.
