Implementing Lexical Analyzers

Finite Automata

Transition $\delta : s_a \xrightarrow{input} s_b$

This is read as "In state $S_{\rm a},$ go to state $S_{\rm b},$ when input is encountered"

At the end of the input (or when no transition is possible), if in current state X • If X \in accepting set F, then accept • otherwise, reject

We sometimes prefer to use graphical representations of finite automata, known as a state graph.

State Graph Sy	ate Graph Symbols	
Start State	\rightarrow	
State	\bigcirc	
Accepting State	\bigcirc	
Transition	$\bigcirc \bigcirc \bigcirc$	
Self-loop	\mathcal{O}	

Power of NFAs and DFAs

Theorem: NFAs and DFAs recognize the same set of languages

Both recognize regular languages.

DFAs are faster to execute because there are no choices to consider.

For a given language, the NFA can be simpler than the DFA – a DFA can be exponentially larger.

NFA to DFA Conversion

Basic idea: Given a NFA, simulate its execution using a DFA

• At step n, the NFA may be in any of multiple possible states

The new DFA is constructed as follows:

- The states of the DFA correspond to a non-empty subset of states of the NFA
- The DFA's start state is the set of NFA states reachable through $\epsilon\text{-}$ transitions from NFA start state
- A transition $S_a \xrightarrow{c} S_b$ is added **iff** S_b is the set of NFA states reachable from any state in S_a after seeing the input *c*, also considering ϵ -transitions

Epsilon-Closure

return ⊤

Let edge(s,c) be the set of all NFA states reachable by following a single edge with label c from state s. For a set of states S, e-closure(S) is the set of states that can be reached from a state in S via ε -transitions. ε -Closure(S) = $S \cup \left(\bigcup_{s \in T} edge(s, \varepsilon) \right)$ function ε -closure(S) $T \leftarrow S$ repeat $T \leftarrow T$ $T = T' \cup (\bigcup_{s \in T}, edge(s, \varepsilon))$ until T=T'

NFA to DFA Remarks

This algorithm does not produce a minimal DFA.

It does however, exclude states that are not reachable from the start state.

This is important because an n-state NFA could have 2ⁿ states as a DFA. (Why? Set of all subsets.)

The minimization algorithm is left to the graduate course.

Why DFAs?

Why'd we do all that work?

A DFA can be implemented by a 2D table T:

- One dimension is states, the other dimension is input characters
- For $S_a \xrightarrow{c} S_b$ we have $T[S_a,c] = S_b$

DFA execution:

- If the current state is S_a and input is c, then read $\mathsf{T}[S_a,c]$
- Update the current state to $S_{\rm b},$ assuming $S_{\rm b}$ = T[S_{\rm a},c]
- This is very efficient

Automating Automatons

If we have algorithmic ways to convert REs to NFAs and to convert NFAs to faster DFAs, we could have a program where we write our lexical rules using REs and automatically have a table-driven lexer produced.

NFA to DFA conversion is the heart of automated tools such as lex/flex/JLex/Jflex • DFA could be very large

In practice, lex-like tools trade off speed for space in the choice of NFA and DFA representations

