
10/7/2012

1

Implementing Lexical
Analyzers

Finite Automata
For lexical analysis:

• Specification — Regular expression

• Implementation — Finite automata

A finite automata consists of 5 components: (, S, n, F,
1. An input alphabet,
2. A set of states, S

3. A start state, n S

4. A set of accepting states F ⊆ S

5. A set of transitions, : Sa
input

Sb

Finite Automata
Transition : Sa

input
Sb

This is read as “In state Sa, go to state Sb, when input is encountered”

At the end of the input (or when no transition is possible), if in current state X

• If X accepting set F, then accept
• otherwise, reject

We sometimes prefer to use graphical representations of finite automata, known as
a state graph.

Start State

State

Accepting State

Transition

Self-loop

State Graph Symbols

Examples

i f

Alphabet = ASCII
Accepts: “if”

Alphabet = {0,1}
Accepts: 1*0

1

0

Examples

What language does this recognize? (Alphabet = {0,1})

Two or more 0s in a row at the end of the input

Regex: 00* or 00+ or 0{2,}

1

1
1

0 0

0

10/7/2012

2

Table Implementation

T

U

S

0

0

0

1

1

Table Implementation

T

U

S

0

0

0

1

1

0 1

S T U

T T U

U T X

Input

S
ta

te

Table-driven Code
FSA() {

state = ‘S’;

while (!done) {

ch = fetch_input();

state = Table[state][ch];

if (state == ‘X’) {

System.err.println(“error”);

}

}

if (state F){

System.out.println(“accept”);

}

else {

System.out.println(“reject”);

}

}

Epsilon Transitions

Another kind of transition: - transition

• Machine can move from state A to state B without reading any input

A B

DFA & NFAs
Deterministic Finite Automata (DFA):

• One transition per input per state

• No -moves

Non-deterministic Finite Automata (NFA):
• Can have multiple transitions for one input in a given state

• Can have -moves

Finite automata have finite memory

• Need only to encode the current state

Converting REs to NFAs
Thompson’s Algorithm
REs can be converted to NFAs. Atomic REs are straightforward.

Epsilon transitions:

Single characters:

a

10/7/2012

3

Converting REs to NFAs

Alternation:
N1 | N2

Concatenation:
N1 N2

N1

N2

N2N1

Converting REs to NFAs
Kleene Closure:
N1

*

N1

Example
Convert (a|b)*ab to an NFA

Example
Convert (a|b)*ab to an NFA

Step 1: a

a

Example
Convert (a|b)*ab to an NFA

Step 2: b

a

b

Example
Convert (a|b)*ab to an NFA

Step 3: (a|b)

a

b

10/7/2012

4

Example
Convert (a|b)*ab to an NFA

Step 4: (a|b)*

a

b

Example
Convert (a|b)*ab to an NFA

Step 5: (a|b)*a

a

b

a

Example
Convert (a|b)*ab to an NFA

Step 6: (a|b)*ab

a

b

a b

Executing Finite Automata
A DFA can take only one path through the state graph

• Completely determined by input

A NFA can take multiple paths “simultaneously”

• NFAs make -transitions
• There may be multiple transitions out of a state for a single input

• Rule: the NFA accepts it if can get into a final state by any path

Which is more powerful, an NFA or a DFA?

Power of NFAs and DFAs
Theorem: NFAs and DFAs recognize the same set of languages

Both recognize regular languages.

DFAs are faster to execute because there are no choices to consider.

For a given language, the NFA can be simpler than the DFA – a DFA can be
exponentially larger.

Example
NFA and DFA that accept (a|b)*ab

a

b

a b

b

ba

b
a

a

10/7/2012

5

NFA to DFA Conversion
Basic idea: Given a NFA, simulate its execution using a DFA

• At step n, the NFA may be in any of multiple possible states

The new DFA is constructed as follows:

• The states of the DFA correspond to a non-empty subset of states of the
NFA

• The DFA’s start state is the set of NFA states reachable through -
transitions from NFA start state

• A transition Sa→Sb	is added iff Sb is the set of NFA states reachable
from any state in Sa after seeing the input c, also considering -
transitions

Epsilon-Closure
Let edge(s,c) be the set of all NFA states reachable by following a single edge with
label c from state s.

For a set of states S, -closure(S) is the set of states that can be reached from a state
in S via -transitions.

	 ∪ ,
∈

function -closure(S)
T ← S
repeat

T’ ← T
T T′	 ∪ ⋃ edge s, ε∈

until T=T’
return T

Start State

The NFA’s start state is S0, so the DFA’s start state = -closure(S0)

By iteration:

T1 = S0 = {S0}

T2 = T1 ∪ -closure(T1) = {S0, S1, S7}

T3 = T2 ∪ -closure(T2) = {S0, S1, S2, S4 , S7}

T4 = T3 ∪ -closure(T3) = {S0, S1, S2, S4 , S7}

T4 = T3 so we are done.

61

2 3
a

4 5
b

0 7

8
a b

9

NFA to DFA Conversion Example

61

2 3
a

4 5
b

0 7

8
a b

9

Start state = -closure(S0) = {0, 1, 2, 4, 7} = A

We’ll call this collection of states A, and will be a new node in our DFA that is our
DFA start state.

A

Set Name

{0, 1, 2, 4, 7} A

Construct DFA

We now compute where we can go from A on each input in our alphabet.

On an ‘a’, considering each state in A, where might we end up? An a would take us
from 2 to 3 and from 7 to 8. But we must consider our ε-transitions as well.

B = ε-closure(3) ∪ ε-closure(8) = {1, 2, 3, 4, 6, 7 } ∪ {8}

A

Ba

61

2 3
a

4 5
b

0 7

8
a b

9

Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

Construct DFA

On an ‘b’, considering each state in A, we could go to 5, but we must do the -
closure.

C = ε-closure(5) = {1, 2, 4, 5, 6, 7}

A

B

C

a

b

61

2 3
a

4 5
b

0 7

8
a b

9

Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

{1, 2, 4, 5, 6, 7} C

10/7/2012

6

Construct DFA

Repeat process for B:

In B, see an ‘a’ = {1, 2, 3, 4, 6, 7, 8} = B (Self loop)
In B, see a ‘b’ = {1, 2, 4, 5, 6, 7, 9} = D

a

A

C

a

b

B D
b

61

2 3
a

4 5
b

0 7

8
a b

9

Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

{1, 2, 4, 5, 6, 7} C

{1, 2, 4, 5, 6, 7, 9} D

Construct DFA

Repeat process for C:

In C, see an ‘a’ = {1, 2, 3, 4, 6, 7, 8} = B

In C, see a ‘b’ = {1, 2, 4, 5, 6, 7} =C (Self loop)
a

A

C

a

b

B D
b

a

b

Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

{1, 2, 4, 5, 6, 7} C

{1, 2, 4, 5, 6, 7, 9} D

61

2 3
a

4 5
b

0 7

8
a b

9

Construct DFA

Repeat process for D:

In D, see an ‘a’ = {1, 2, 3, 4, 6, 7, 8} = B

In D, see a ‘b’ = {1, 2, 4, 5, 6, 7} =C

a

A

C

a

b

B
b

a

b

D

a

b

Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

{1, 2, 4, 5, 6, 7} C

{1, 2, 4, 5, 6, 7, 9} D

61

2 3
a

4 5
b

0 7

8
a b

9

DFA Final States
A state in the DFA is final if one of the states in the set of NFA states is final.

a

A

C

a

b

B
b

a

b

a

b

D Set Name

{0, 1, 2, 4, 7} A

{1, 2, 3, 4, 6, 7, 8 } B

{1, 2, 4, 5, 6, 7} C

{1, 2, 4, 5, 6, 7, 9} D

NFA to DFA Remarks
This algorithm does not produce a minimal DFA.

It does however, exclude states that are not reachable from the start state.

This is important because an n-state NFA could have 2n states as a DFA.

(Why? Set of all subsets.)

The minimization algorithm is left to the graduate course.

Why DFAs?
Why’d we do all that work?

A DFA can be implemented by a 2D table T:

• One dimension is states, the other dimension is input characters

• For Sa→Sb	we have T[Sa,c] = Sb

DFA execution:

• If the current state is Sa and input is c, then read T[Sa,c]

• Update the current state to Sb, assuming Sb = T[Sa,c]

• This is very efficient

10/7/2012

7

Automating Automatons
If we have algorithmic ways to convert REs to NFAs and to convert NFAs to faster
DFAs, we could have a program where we write our lexical rules using REs and
automatically have a table-driven lexer produced.

NFA to DFA conversion is the heart of automated tools such as lex/flex/JLex/Jflex
• DFA could be very large

• In practice, lex-like tools trade off speed for space in the choice of NFA and DFA
representations

Implementation
RE → NFA → DFA → Table-driven Implementation

• Specify lexical structure using regular expressions

Finite automata

• Deterministic Finite Automata (DFAs)

• Non-deterministic Finite Automata (NFAs)

Table implementation

Lexical
Specification

Set of
Regular

Expressions
NFA DFA

Table-driven
Implementation

Automatic
conversion

Manual
conversion

Scanner Automaton

> =

other

return OP_GE;

return OP_GT;

other

other

return INT_CONST;

return IDENTIFIER;

digit

letter | digit | _

letter | _

digit

Ambiguity Resolution
Imagine a rule for C identifiers:

[a-zA-Z_][a-zA-Z0-9_]*

And the rule for a keyword such as if:
“if”

How do we resolve the fact that if is a keyword and if8 is an identifier?

Two rules:

1. Longest match – The match with the longest string will be chosen.

2. Rule priority – for two matches of the same length, the first regex will
be chosen. I.e., Rule order matters.

