
11/26/2012

1

CS 1622:
Garbage Collection

Jonathan Misurda

jmisurda@cs.pitt.edu

Manual Allocation
Dynamic memory allocation is an obvious necessity in a programming 
environment.

Many programming languages expose some functions or keywords to manage 
runtime allocations:

• C: malloc/free

• C++: new/delete

However, these constructs often leave it up to the programmer to de-allocate a 
region.

Memory Leaks
To deallocate a region, some function at runtime must be given a handle to a 
region to deallocate.

A handle might be a pointer or reference returned from the allocation routine. We 
then pass that handle back to the runtime system to de-allocate the region.

But what happens if we lose that handle?

We may lose a handle because it is overwritten or is deallocated when going out 
of scope.

Memory with no handle to it cannot be referenced or freed – a memory leak.

Example 1
void sum(int x)

{

int i, sum;

int *array = malloc(sizeof(int) * x);

for(i=0; i<x; i++)

{

scanf(“%d”, array + i);

}

for(i=0; i<x; i++)

{

sum += array[i];

}

printf(“The total is %d\n”, sum);

}

Example 2
do 

{

int *x = malloc(sizeof(int));

printf(“Enter an integer (0 to stop):”);

scanf(“%d”, x);

printf(“You entered %d\n”, *x);

} while(*x != 0);

Example 3
typedef struct { int data; struct node *next } Node;

Node *head;

head = malloc(sizeof(Node));

head->next = malloc(sizeof(Node));

head->next->next = NULL;

free(head);



11/26/2012

2

Garbage Collection
It can be hard to find memory leaks and they are easy mistakes to make.

A memory leak may eventually cause a program to terminate/crash due to being 
out of memory.

Can we automate memory de-allocation instead of relying on the programmer to 
do it properly?

• Garbage Collection

First we need to define garbage

• Must automatically detect that the program will never need a dynamically-
allocated memory region again.

And then find some efficient way to make it go away.

Garbage
Garbage can be defined using the ideas we have already presented. Garbage is a 
region of memory with no way to find it:

• i.e., we’ve leaked it

The garbage collection depends on the ability to determine if an object is 
reachable.

But if we’ve lost all handles to it, how do we know what to reclaim?

In general, this can be an impossible task. But we may be able to augment the 
runtime system or compiler to make the task possible in most cases.

Reachability
Named object: something that had a name at compile time

Nameless object: something that was referenced only by address at runtime

struct Node *head = malloc(sizeof(struct node));

The pointer head is a named objects, the struct node on the heap is a nameless 
object.

An object x is reachable iff:

• A named object contains a handle to x

• Another reachable object y contains a handle to x

Garbage Collection
In general, garbage collection algorithms all operate similarly:

1. Allocate memory as needed at runtime

2. When space “runs out”:

a. Compute what might be used again by finding reachable objects

b. Free space unused by the objects found in the previous step

We find reachable objects by starting with a set of root pointers. These are named 
objects that are held in registers, globals, or on the stack.

This means that we need to know the layout of objects so we can identify pointers 
versus other values.

• Is 0x080407d4 an address or an int?

Reference Counting
1. For every object (region of dynamically allocated memory):

a) Retain an internal counter

b) Increment when a reference is made to it

c) Decrement when a reference is lost to it

2. When counter is zero, free.

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

Stack Heap



11/26/2012

3

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

o

1

Stack Heap

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

o

a 2

Stack Heap

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

o

1

Stack Heap

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

0

Stack Heap

Example
function main() {

g();

}

function g() {

Object o = new Object();

f(o);

}

function f(Object a)

{

//do something

}

Stack Heap

Problems with Reference Counting

Must update counter at:

• Every assignment

• Every function call

• Every function return

Circular references:

Count: 2 Count: 1head



11/26/2012

4

Problems with Reference Counting

Must update counter at:

• Every assignment

• Every function call

• Every function return

Circular references are a problem:

Count: 1Count: 1head

Mark and Sweep
1. Walk root objects and find all references

2. For each reference:

a) Visit the object that is referenced

b) Mark it as “not garbage”

c) Do the same for all references in object

3. Walk the heap, freeing all unmarked objects

Mark and Sweep

A

B

C

head

Mark and Sweep

A

B

C

head

Mark and Sweep

A

B

C

head

Mark and Sweep

A

C

head



11/26/2012

5

Advantages and Disadvantages
No longer need to modify reference counter during program execution.

However, Mark and Sweep is a stop-the-world collector. 

• We cannot do this while the objects are being used.

External fragmentation is a considerable problem.

DFS potentially requires a large stack in a high-degree graph.

Copying Collectors
Try to avoid issues of external fragmentation by compacting used space.

1. Divide memory into halves

2. Only allocate from first half

3. When half is (nearly) full

a) Walk root objects and recursively copy every object to unused half

The most basic copying collector is called Stop and Copy or the SemiSpace
collector

Stop and Copy

A B C Unused

Stop and Copy

A CUnused

Problems
Slow to collect (another stop-the-world algorithm).

Moving objects hurts cache performance.

Wasteful of memory.

All pointers need to be updated to point to new location

• Alternatively use a layer of indirection called a table of contents

Generational Garbage Collectors
Most objects have a short lifetime, so if an object makes it through a GC without 
being collected, don’t try to collect it again for a while.

1. Divide the heap into several partitions (generations)

2. Objects are allocated from the youngest generation

3. When a generation is full:

a) move live objects to an older generation



11/26/2012

6

Incremental Collection
We may wish to avoid stop-the-world collection algorithms in interactive or real-
time systems.

An incremental algorithm is one in which the collector operates only when the 
program requests it.

A concurrent algorithm the collector can operate between or during any 
instructions executed by the program.

C vs. Java
How does supporting GC influence language design and features?

• Opaque references

• No pointer arithmetic 

• Strict typing

• Runtime introspection


