
11/12/2012

1

Register Allocation

Register Allocation
When we generated IR, we held temporary results in virtual registers that we
“allocated” from a presumably infinite register file.

When we do code generation, we must face the reality of having a limited set of
registers, including those that may have architecture-defined purposes (stack
pointer, frame pointer, etc.).

Thus we have a mapping problem: How do we map the elements from the virtual
register set into the real architectural registers?

First Approach: Do Nothing
There is a way to skip the issue.

Allocate every variable to memory:

• Locals in activation records

• Globals in data segment

• Member variables Heap allocated variables

Only bring a value from memory when you need it for a calculation.

Immediately store the result back to its memory location.

Naïve Approach Drawbacks
This approach is much too naïve for practical use.

Memory accesses are expensive, regardless of the cache structure.

We may have dozens of temporaries whose values are calculated once, used
once, and then are never necessary again. This results in huge allocations.

However, this is easy to generate code for and to get right (our #1 priority in code
generation).

Often this is what you will get from a compiler like gcc with no optimizations on
(the default).

Better Approach
We may note that the idea of saving elements back to memory is unnecessary if
we immediately use them again.

Can we identify when a value is useful versus when it does not need to be stored
in a register?

Liveness Analysis can tell us the useful range of a value.

A value is live if its current value will be useful again at a point in the future.

Liveness Analysis
x := 0

LOOP: a := x * 2

x := x + 1

c := c + a

if a < 100 goto LOOP

return c;

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

11/12/2012

2

Liveness Analysis
x := 0

LOOP: a := x * 2

x := x + 1

c := c + a

if a < 100 goto LOOP

return c;

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + aa

Liveness Analysis
x := 0

LOOP: a := x * 2

x := x + 1

c := c + a

if a < 100 goto LOOP

return c;

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

x

x

Liveness Analysis
The liveness of a value follows the control flow of the program.

We consider the set of problems where we follow data throughout the program a
dataflow problem.

Control Flow
We have visited the problem of control flow and constructed a control flow graph
(CFG) to determine the basic blocks’ relation to each other.

Some definitions we will prefer to use:

A CFG node represents a basic block, and by our definition, a basic block has a
single entry point and a single exit point.

For each incoming edge to the start of a basic block, we have a control-flow
predecessor.

For each outgoing edge from the end of a basic block, we have a control-flow
successor.

Defs and Uses
A definition (def) of a variable or temporary occurs when the symbol appears as
the left hand side of an assignment.

A use of a variable is an occurrence of the symbol on the left hand side of an
expression.

We can use these concepts then to describe the set of variable defs and uses that
a node in the CFG defines.

Liveness can then be defined by saying:

A variable is live on a control-flow edge if there is a directed path from that edge to
a use of that variable that does not go through a def.

Liveness Calculation
Liveness information of each node n of our CFG can be calculated as follows:

• If a node contains a use of a variable, the variable is live on the entry to
the block (use[n] implies live-in[n])

• If a variable is live-in at node n, then it is live-out in all of the CFG
predecessors of n

• If a variable is live-out at node n, and not in def[n], then the variable is
also live-in at n

In equation form:
∪

	
∈

11/12/2012

3

Liveness Calculation Algorithm
for each n

in[n] ← {}

out[n] ← {}

end for

repeat

for each n //(in reverse DFS order)

in’[n] ← in[n]

out’[n] ← out[n]

in[n] ← use[n] ∪ (out[n] − def [n])

out[n] ← ∪s ∈ succ[n] in[s]

end for

until in’[n] = in[n] and out[n] = out’[n] for all n

Liveness Analysis

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5

4

3

2

1

Start with block 6:

in'[6] = in[6] = {}
out'[6] = out[6] ={}
in[6] = use[6] ∪ (out[6]-def[6])
in[6] = {c} ∪ ({} – {})
out[6] = Union over successors
No successors
Done.

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5 a c

4

3

2

1

Next go to block 5:

in'[5] = in[5] = {}
out'[5] = out[5] = {}
in[5] = use[5] ∪ (out[5]-def[5])
in[5] = {a} ∪ ({} – {})
out[5] = in[6] ∪ in[2] = {c}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5 a c

4 c, a a

3

2

1

Next go to block 4:

in'[4] = in[4] = {}
out'[4] = out[4] = {}
in[4] = use[4] ∪ (out[4]-def[4])
in[4] = {c,a} ∪ ({} – {c})
out[4] = in[5] = {a}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5 a c

4 c, a a

3 x c, a

2

1

Next go to block 3:

in'[3] = in[3] = {}
out'[3] = out[3] = {}
in[3] = use[3] ∪ (out[3]-def[3])
in[3] = {x} ∪ ({} – {x})
out[3] = in[4] = {c, a}

11/12/2012

4

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5 a c

4 c, a a

3 x c, a

2 x x

1

Next go to block 2:

in'[2] = in[2] = {}
out'[2] = out[2] = {}
in[2] = use[2] ∪ (out[2]-def[2])
in[2] = {x} ∪ ({} – {a})
out[2] = in[3] = {x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out

6 c

5 a c

4 c, a a

3 x c, a

2 x x

1 x

Finally block 1:

in'[1] = in[1] = {}
out'[1] = out[1] = {}
in[1] = use[1] ∪ (out[1]-def[1])
in[1] = {} ∪ ({} – {x})
out[1] = in[2] = {x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c

4 c, a a

3 x c, a

2 x x

1 x

Since the sets changed in the first go
through, we must do it all again, starting
with Block 6:

in'[6] = in[6] = {c}
out'[6] = out[6] = {}
in[6] = use[6] ∪ (out[6]-def[6])
in[6] = {c} ∪ ({} – {})
out[6] =

No Change

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c a, c c, x

4 c, a a

3 x c, a

2 x x

1 x

Block 5:

in'[5] = in[5] = {a}
out'[5] = out[5] = {c}
in[5] = use[5] ∪ (out[5]-def[5])
in[5] = {a} ∪ ({c} – {})
out[5] = in[6] ∪ in[2] = {c,x}

Changed

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c a, c c, x

4 c, a a a, c a, c

3 x c, a

2 x x

1 x

Block 4:

in'[4] = in[4] = {a}
out'[4] = out[4] = {a}
in[4] = use[4] ∪ (out[4]-def[4])
in[4] = {c, a} ∪ ({a} – {c})
out[4] = in[5] = {a,c}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c a, c c, x

4 c, a a a, c a, c

3 x c, a a, c, x a, c

2 x x

1 x

Block 3:

in'[3] = in[3] = {x}
out'[3] = out[3] = {c, a}
in[3] = use[3] ∪ (out[3]-def[3])
in[3] = {x} ∪ ({c,a} – {x})
out[3] = in[4] = {a,c}

11/12/2012

5

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c a, c c, x

4 c, a a a, c a, c

3 x c, a a, c, x a, c

2 x x x a, c, x

1 x

Block 2:

in'[2] = in[2] = {x}
out'[2] = out[2] = {x}
in[2] = use[2] ∪ (out[2]-def[2])
in[2] = {x} ∪ ({x} – {a})
out[2] = in[3] = {a,c,x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out

6 c c

5 a c a, c c, x

4 c, a a a, c a, c

3 x c, a a, c, x a, c

2 x x x a, c, x

1 x x

Block 1:

in'[1] = in[1] = {}
out'[1] = out[1] = {x}
in[1] = use[1] ∪ (out[1]-def[1])
in[1] = {} ∪ ({x} – {x})
out[1] = in[2] = {x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x

4 c, a a a, c a, c

3 x c, a a, c, x a, c

2 x x x a, c, x

1 x x

Since the sets changed, we must do it all
again, starting with Block 6:

in'[6] = in[6] = {c}
out'[6] = out[6] = {}
in[6] = use[6] ∪ (out[6]-def[6])
in[6] = {c} ∪ ({} – {})
out[6] =

No Change

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c

3 x c, a a, c, x a, c

2 x x x a, c, x

1 x x

Block 5:

in'[5] = in[5] = {a, c}
out'[5] = out[5] = {c, x}
in[5] = use[5] ∪ (out[5]-def[5])
in[5] = {a} ∪ ({c,x} – {})
out[5] = in[6] ∪ in[2] = {c,x}

Changed

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c a, c a, c, x

3 x c, a a, c, x a, c

2 x x x a, c, x

1 x x

Block 4:

in'[4] = in[4] = {a, c}
out'[4] = out[4] = {a, c}
in[4] = use[4] ∪ (out[4]-def[4])
in[4] = {a, c} ∪ ({a,c} – {c})
out[4] = in[5] = {a,c,x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c a, c a, c, x

3 x c, a a, c, x a, c a, c, x a, c

2 x x x a, c, x

1 x x

Block 3:

in'[3] = in[3] = {a, c, x}
out'[3] = out[3] = {a, c}
in[3] = use[3] ∪ (out[3]-def[3])
in[3] = {x} ∪ ({a,c} – {x})
out[3] = in[4] = {a,c}

11/12/2012

6

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c a, c a, c, x

3 x c, a a, c, x a, c a, c, x a, c

2 x x x a, c, x a, c, x a, c, x

1 x x

Block 2:

in'[2] = in[2] = {x}
out'[2] = out[2] = {a, c, x}
in[2] = use[2] ∪ (out[2]-def[2])
in[2] = {x} ∪ ({a,c,x} – {a})
out[2] = in[3] = {a,c,x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c a, c a, c, x

3 x c, a a, c, x a, c a, c, x a, c

2 x x x a, c, x a, c, x a, c, x

1 x x a, c, x

Block 1:

in'[1] = in[1] = {}
out'[1] = out[1] = {x}
in[1] = use[1] ∪ (out[1]-def[1])
in[1] = {} ∪ ({x} – {x})
out[1] = in[2] = {a,c,x}

Liveness Analysis
x := 0

a := x * 2

x := x + 1

if a<100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

Block Use Def

6 c

5 a

4 c, a c

3 x x

2 x a

1 x

In Out In Out In Out

6 c c c

5 a c a, c c, x a, c, x c, x

4 c, a a a, c a, c a, c a, c, x

3 x c, a a, c, x a, c a, c, x a, c

2 x x x a, c, x a, c, x a, c, x

1 x x a, c, x

It will take one more iteration to converge.

in[4] = use[4] ∪ (out[4]-def[4])
in[4] = {a, c} ∪ ({a,c,x} – {c})

out[3] = in[4] = {a,c,x}

use[4] ∪ (out[4]-def[4])

in[4]

Liveness Analysis

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

In Out

1 a, c, x

2 a, c, x a, c, x

3 a, c, x a, c, x

4 a, c, x a, c, x

5 a, c, x c, x

6 c

Liveness Analysis

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

In Out

1 a, c, x

2 a, c, x a, c, x

3 a, c, x a, c, x

4 a, c, x a, c, x

5 a, c, x c, x

6 c

Liveness Analysis
In Out

1 a, c, x

2 a, c, x a, c, x

3 a, c, x a, c, x

4 a, c, x a, c, x

5 a, c, x c, x

6 c

x := 0

a := x * 2

x := x + 1

if a < 100 goto LOOP

return c;

1:

2:

3:

4:

5:

6:

c := c + a

11/12/2012

7

Notes on Liveness
The liveness algorithm we have presented will converge regardless of the order
that the blocks are visited in, however since out depends on the control flow
successors, working in the reverse flow order will generally converge faster.

The algorithm we have presented is conservative: it may overestimate the
liveness.

To do this perfectly, we’d have to solve the halting problem.

Since we cannot, we have two choices:

1. Potentially underestimate and have our wrong solution influence our
decisions and ultimately produce wrong code

2. Overestimate and sometimes produce code that is not as good as if we
had perfect knowledge

Notes on Liveness (2)
We are much more likely to apply this algorithm at the basic block level rather than
the statement level. This also reduces the number of nodes in the graph,
something that affects the performance of the algorithm.

The performance of the algorithm depends upon the number of variables, the
number of blocks, and how much work the algorithm does each step. In the worst
case, the algorithm is O(n4) but in practice, using the reverse CFG order, it is
usually O(n2) or less.

Data Structures for Implementation
We need a set data structure. We can implement one using a linked list or, if our
data is dense, use a bit vector.

A bit vector allows us to assign a bit in a word to represent something like the
presence of a particular variable in a given block’s def, use, in, or out set.

For example:

In block 5, we have an out set of {c, x}. We can represent this as:

a c x

0 1 1

java.util.BitSet
BitSet()

BitSet(int nbits)

and(BitSet set) – set intersection

or(BitSet set) – set union

andNot(BitSet set) – set difference

set/get/clear/flip, etc.

Interference Graphs
The liveness information we have computed can be used for a
variety of optimizations in the compiler.

The most immediate and beneficial one to us on typical
machine architectures will be for register allocation.

Imagine we have three variables: x, y, and z and two registers
$r1 and $r2 to use.

We can build an interference graph like the one on the right to
express overlapping live ranges for the variables.

From this we can discover that x and z do not overlap and can
be assigned to the same register by the allocator.

x

y

z

Move (Copy) Instructions
If we have a statement of the form:

t2 := t1

And subsequent uses of both t1 and t2 later in the program, their live ranges
overlap and an edge (t1, t2) would be added to the interference graph.

However, since it is the same value in each, we do not need to keep them in
separate registers.

11/12/2012

8

Building the Interference Graph
Considering this, there are two rules for when to add an edge to the interference
graph:

1. A non-move definition of a variable a with live-out variables b1, …, bn
• Add edges (a, b1) … (a, bn)

2. A move a := c with live-out variables b1,…, bn
• Add edges (a, b1) … (a, bn) for all bi ≠ c

