
11/7/2012

1

CS 1622:
Code Generation & Register
Allocation

Jonathan Misurda

jmisurda@cs.pitt.edu

Code Generation
Input: Intermediate representation

Output: Target code

Example:

slti $t1, 3, $s0
beq $t1, $zero, L1
addi $s1, $s1, 1

L1:

if-statement

>

x 3

stmt_list

post-inc

y

cond_expr

Why is Code Generation Hard?
If the goal is to simply generate target code, we have already done this when we
generated IR:

• Walk the AST and emit target code.

However, if we want to generate good target code, there are many things to
consider.

Ultimately, the back end of the compiler is the repository of machine-specific
knowledge.

We need to be able to assess among the multiple possible ways to encode a
calculation, which one is best.

Arrays
Consider converting the following to machine code and data:

int A[low … high];

A[i]++;

To deal with this array, we need to know the following things:

• width — width (size) of each element

• base — address of the first element

• low/high — lower/upper bound of subscript

low i high

Array Element Address
The address of element A[i] is then:

base + (i - low) * width =

i * width + (base-low*width) =

i * width + C1

Where C1 is a constant for this array.

Multidimensional Arrays
How should we store the data for a 2-Dimensional array?

Memory is one dimensional and so we must linearize our multi-dimensional
arrays.

Two choices for how to do this:

• Row Major Order

• Column Major Order

11/7/2012

2

Row Major Order

Row Major Order — Store data elements row by row

Blue elements are stored before A[i1, i2]

Address of Element A[i1, i2]:

= base + ((i1 - low1) * N2 + (i2 - low2)) * width

= (i1 * N2 + i2) * width + C2R

N2

N1

[i1, i2]

Column Major Order

Column Major Order — Store data elements row by row

Blue elements are stored before A[i1, i2]

Address of Element A[i1, i2]:

= base + ((i2 - low2) * N1 + (i1 - low1)) * width

= (i2 * N1 + i1) * width + C2C

N2

N1

[i1, i2]

Higher Dimensional Arrays
Row major: addressing a k-dimension array item (lowi = base = 0)

Ak = Ak-1 * Nk + ik *width

Column major: addressing a k-dimension array item (lowi = base = 0)

Ak = ik * Nk-1 * Nk-2 * … * N1 * width + Ak-1

C Arrays
C uses row major order:

int fun1(int p[][100])

{

int a[100][100];

…

a[i1][i2] = p[i1][i2] + 1;

}

Why is p[][100] allowed?

• The information is enough to compute p[i1][i2]’s address

• A2 = (i1 * N2 + i2) * width ...

Why is a[][100] is not allowed?

• Need to allocate space

Java Arrays
Java doesn’t have 2+ dimensional arrays.

Arrays are arrays of arrays.

int [][] a = new int[5][5];

Why Does it Matter?

Caching

11/7/2012

3

Memory Hierarchy

SRAM: 1-25 ns (2-100 cycles)

DRAM: 60-120 ns

Magnetic disk: 10-20 million ns

CPU

L1 Data

L1
Instr.

L2
I & D

Main
Memory
(RAM)

Disk

Speed

Capacity

Fast Slow

Small Large

RF

Locality
How do we know what to include in the levels that are faster but smaller?

Use principles of locality:

• Temporal locality: What you use now, you will likely use again soon.

• Spatial locality: When you access an address, you will likely access its
neighbors soon.

Caches Exploit Locality
For temporal locality, keep more recently used items closer to the processor.
Less recently used items can be kept farther away.

For spatial locality, get items nearby referenced item at the same time as the
requested item. (That is, don’t just bring what was requested but rather move
larger blocks of contiguous memory.)

Cache Basics
Is address 16 in the cache?

If yes, we have a cache “hit”.

If no, we have a cache “miss”.

Processor

RAM

Cache

Cache Basics
Is address 16 in the cache?

If yes, we have a cache “hit”.

If no, we have a cache “miss”.

Address 16 is there, so we have a
cache hit.

Processor

RAM

Cache

Cache Basics
Is address 16 in the cache?

If yes, we have a cache “hit”.

If no, we have a cache “miss”.

Address 16 isn’t in the cache, so we
must go to a farther away level of the
memory hierarchy.

On a miss of our cache, we must go to
main memory.

Processor

RAM

Cache

11/7/2012

4

Cache Basics
Is address 16 in the cache?

If yes, we have a cache “hit”.

If no, we have a cache “miss”.

Address 16 isn’t in the cache, so we
must go to a farther away level of the
memory hierarchy.

On a miss of our cache, we must go to
main memory.

Data can then be transferred between
levels. Processor

RAM

Cache

Cache Basics
Is address 16 in the cache?

If yes, we have a cache “hit”.

If no, we have a cache “miss”.

Address 16 isn’t in the cache, so we
must go to a farther away level of the
memory hierarchy.

On a miss of our cache, we must go to
main memory.

Data can then be transferred between
levels.

Data may be transferred together in
some minimal unit, we’ll call a block.

Processor

RAM

Cache

Row by Row vs. Col by Col
#define ROWS 20000

#define COLS 20000

int a[COLS][ROWS];

int main() {

int i; int j;

long long sum =0;

for(i=0;i<COLS;i++)

for(j=0; j<ROWS; j++)

a[i][j]=rand()%10+1;

for(i=0;i<COLS;i++)

for(j=0; j<ROWS; j++)

sum += a[i][j];

return 0;

}

#define ROWS 20000

#define COLS 20000

int a[COLS][ROWS];

int main() {

int i; int j;

long long sum =0;

for(i=0;i<ROWS;i++)

for(j=0; j<COLS; j++)

a[j][i]=rand()%10+1;

for(i=0;i<ROWS;i++)

for(j=0; j<COLS; j++)

sum += a[j][i];

return 0;

}

Results
gcc -m32 -o row roworder.c

time ./row

real 0m15.979s

user 0m14.651s

sys 0m1.326s

gcc -m32 -o col colorder.c

time ./col

real 0m38.640s

user 0m37.417s

sys 0m1.212s

37.417
14.651

2.55

2.55x slower just by interchanging the loops!

Processing Boolean Expressions
Representation of True and False:

Like C:

0 – False

Anything Else – True

Alternative:

0 – False

-1 – True (-1 in Two’s complement is the string of all 1s)

Short Circuiting

E = (a < b) or (c < d and e < f)

if (a<b) goto TRUE_CODE

L1: if (c<d) goto L2

goto FALSE_CODE

L2: if (e<f) goto TRUE_CODE

goto FALSE_CODE

Processing Control Flow
Whenever we have forward control flow jumps (to locations we haven’t translated
yet) we are unable to generate the target labels for the code to jump to.

There are two options:

• Do it in a single pass and resolve unknown jumps using backpatching

• Generate the code in one pass and then the labels in a second pass

11/7/2012

5

Backpatching
Create a worklist of “holes” to fill in as we gain the information necessary to do so.

100: if (a < b) goto ____ Process this branch and add (100) to our worklist

101: a := a + 1

102: b: = b + a

103: goto ___

Backpatching
Create a worklist of “holes” to fill in as we gain the information necessary to do so.

100: if (a < b) goto ____ Process this branch and add (100) to our worklist

101: a := a + 1

102: b: = b + a

103: goto ___ Process this jump and add (103) to our worklist

Backpatching
Create a worklist of “holes” to fill in as we gain the information necessary to do so.

100: if (a < b) goto 104 Process this branch and add (100) to our worklist

101: a := a + 1

102: b: = b + a

103: goto ___ Process this jump and add (103) to our worklist

104: This is the first statement of the basic block (100)

branches to. Go back and fill in the jump to 104.

