
10/29/2012

1

CS 1622:
Activation Records

Jonathan Misurda

jmisurda@cs.pitt.edu

Runtime Considerations
We’re moving towards actually producing target code. This means we need to
consider the runtime actions of the program.

Runtime support:

• Functions and local variable storage

• Dynamic data allocations

• Garbage collection

For now, we will do this independently of the target language and instead focus on
what functions need to work as specified in the source language.

Functions
int f(int x) {

return x;

}

int main() {

int i;

for(i = 0; i< 100; i++)

f(i);

return 0;

}

We need to implement scope in terms
of the allocation lifetimes of our
variables.

In languages like C or Java, we have
local variables whose lifetime is that of a
function call.

However, there are exceptions.

Static Local Variables in C
#include <stdio.h>

void f() {

static int x=0;

printf(“%d\n”, ++x);

}

int main() {

int i;

for(i = 0; i< 100; i++)

f(i);

return 0;

}

Static local variables in C are locally-
scoped but their allocation lifetime exists
longer than the function call.

The solution in C is to treat them like
globals.

Higher-order Functions
let f x =

let g y = x + y

in g

let h = f(3)

let j = f(4)

let z = h(5)

let w = j(7)

printfn "z is %d w is %d" z w

Output:

z is 8 w is 11

This is a higher order function in F#
(Microsoft’s .NET relative of ML)

The function g is a local nested
function in f. Nested functions have
access to the enclosing function’s local
variables.

The function f also returns a function.
This means the function exists longer
than the scope and thus its local
variables need to have extended
lifetimes.

Implementation
Pascal has nested functions, but it does not have functions as returnable values.

C has functions as returnable values, but not nested functions.

Pascal and C can use stacks to hold local variables.

F#, ML, Scheme, and several other languages have both nested functions and

functions as returnable values so they cannot use stacks to hold all local variables.

10/29/2012

2

Stack
Stack

• A portion of memory managed in a last-in, first-out (LIFO) fashion

Function Call
• A control transfer to a segment of code that ends with a return to the

point in code immediately after where the call was made (the return
address)

Calling Convention
• An agreement, usually created by a system's designers, on how function

calls should be implemented

Activation Records
An object containing all the necessary data for a function

• Values of parameters

• Return address

• Local variables

• Size

• …

Also called a frame.

Creation of an activation record occurs in the function prologue.

Deletion of an activation record occurs in the function epilogue.

This gives the data in the activation record the lifetime of the function’s activation.

Why a Stack?
int f(int x) {

return x;

}

int main() {

int i;

for(i = 0; i< 100; i++)

f(i);

return 0;

}

Does this code need a stack?

Alternative: Keep an “array” of activation
records.

Does this work?

int i int x

main f

Recursion!
int f(int x) {

if(x < 2) return 1;

return x * f(x-1);

}

int main() {

int i;

scanf(“%d”, &i);

printf(“%d”, f(i));

return 0;

}

Now we have an uncertain number of
activations that we cannot calculate
statically (at compile time).

We want as many activation records
(and thus copies of x) as necessary to
compute our answer to be allocated.

Function Call, 2 Parameters
#include <stdio.h>

int f(int x, int y)

{

return x+y;

}

int main()

{

int y;

y = f(3, 4);

return 0;

}

f: pushl %ebp

movl %esp, %ebp

movl 12(%ebp), %eax

addl 8(%ebp), %eax

leave

ret

main: pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

subl $16, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call f

movl %eax, 4(%esp)

movl $0, %eax

leave

ret

Stack

Saved $FP of caller

$SP

4

3

$FP

main

10/29/2012

3

Stack

Saved $FP of caller

$SP

4

3

$FP

main

f

Saved $FP of main

Return Address to main

Stack

Saved $FP of caller

4

3

$FP and $SP

main

f

Saved $FP of main

Return Address to main

Frame Pointer
We use the stack pointer (usually an architectural register) to mark the dividing
line between the top of the stack and the free space.

In the epilogue of a method, we need to know how large the AR was in order to
pop it off the stack.

We can use a frame pointer to mark the bottom of the AR with the stack pointer
marking the top.

If we know the size of an activation record at compile time, we can omit the frame
pointer and just encode the size directly in the prologue and epilogue.

However, frame pointers can be useful as the size of a frame is generally not
known until late during the code generation phase, and so using the frame pointer
gives us easy access to the locals and actual parameters.

-fomit-frame-pointer
#include <stdio.h>

int f(int x, int y)

{

return x+y;

}

int main()

{

int y;

y = f(3, 4);

return 0;

}

f: movl 8(%esp), %eax

addl 4(%esp), %eax

ret

main: pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

subl $16, %esp

movl $4, 4(%esp)

movl $3, (%esp)

call f

movl $0, %eax

leave

ret

Registers
Register-register architectures like MIPS require our operands to be loaded into
registers before we can perform operations on them.

Register-memory architectures like x86 may allow for a single memory operand to
our ALU operations, but operands in registers will still execute faster.

Since we usually only have one set of machine registers, functions must share:

Caller-Saved Registers
• A piece of data (e.g., a register) that must be explicitly saved if it needs

to be preserved across a function call

Callee-Saved Registers
• A piece of data (e.g., a register) that must be saved by a called function

before it is modified, and restored to its original value before the function
returns

MIPS Calling Convention
First 4 arguments $a0-$a3

• Remainder put on stack

Return values $v0-$v1

$t0-$t9 are caller-saved temporaries

$s0-$s9 are callee-saved

10/29/2012

4

C Calling Convention
All parameters must be contiguously laid out in memory (none in registers).

Arguments in memory supports taking the address-of any parameter

• We cannot take the address of a register.

Contiguous layout supports the variadic functions like printf:

• We can walk to the variables on the stack to find our additional
arguments at runtime.

Arguments are pushed right to left onto the stack.

Return Addresses
In MIPS, our JAL instruction saves the return address ($PC+4) into an
architectural register, $RA.

In x86, the CALL instruction pushes the return address directly onto the stack.

Which one is better?

It seems that x86 saves us a step since we often need to push $RA onto the stack.

However, this is not always the case. If we consider the call graph of all possible
function calls that may be currently active, we find many functions may be leaf
procedures.

Leaf procedures do not need to save $RA onto the stack, thus avoiding some
memory accesses at runtime. MIPS gives the flexibility of choosing when to spill.

Implementing ARs in MiniJava
void f(int x, int y, int z) {

int a;

int b;

int c;

…

}

None of our parameters escape the function: They are not passed by reference,
have their address taken, or referenced in a nested function. This means that they
can be located anywhere in registers or memory.

We will leave the task of where things are allocated to a later phase: the register
allocator.

MiniJava ARs

MIPS x86

x Register (Tχ) FP + 8

y Register (Tψ) FP + 12

z Register (Tω) FP + 16

a Register (Tα) FP - 4

b Register (Tβ) FP - 8

c Register (Tγ) FP - 12

Temporaries
Some quantities need to be temporarily stored in registers.

The register allocator will decide how to map those temporary values to registers.

For now, we may assume that we have an infinite register set.

The register allocator may have to spill values to the stack to accommodate the
temporaries that we need.

View Shifts

MIPS x86

sub $sp, $sp, AR_SIZE pushl %ebp
movl %esp, %ebp
subl $AR_SIZE, %esp

