Page Replacement Algorithms

How do we choose a frame to swap out?

6/14/2009

Page Replacement Algorithms

e Optimal
— Evict the page that won’t be needed until furthest in the future
¢ Not Recently Used (NRU)
— Evict the page that is the oldest, preferring pages that are not dirty:

Preference Referenced Dirty
First Choice) 0

0 1

1 0
Last Choice 1 1

« FIFO

— Firstin, First out

Second Chance Page Replacement

Clock Algorithm

Key: |:| E

Least Recently Used (LRU)
Look to the past to predict the future

t=21
Aging Scheme
Referenced
this tick Tick 0 Tick 1 Tick 2 Tick3 | Tick4
-

Page0 | |1peeeeee | [11600000 | [11100000 | | ©1110000 :
Page 1 1 01000000 | | 00100000 | | 00010000
Page2 | | | 1000000 | | eele00ce | [10010000 | | 1001000
Page 3 10000000 | | 01000000
Page4 [|1beeeeee | | e1eee0ee 10100000 | [11010000 | | 01101000
Page5 [|1beceeee | [1leeeeee | | elleeeee | [10116000 : 11011000

Working Set

w(k,t)

6/14/2009

¢ Working set is the set of pages used by the k
most recent memory references

¢ w(k,t) is the size of the working set at time t

Working Set Page Replacement

=204] Current virtual time

Information about { |~ R (Referenced) bit
one page 84 14

2003 1
Time of last use ———= 1880 1] Scan all pages examining R bit;

it{R==1)

Page 1213 Jo sel time of last use to current virtual time
during this tick

FT 1 if{R == 0 and age > 1}

2020 T remeve his page
032 1 if{(R==0andage <)
239_9 "‘g_ h ber the smallest time
S -
Page table

Summary
Algorithm Comment
OPT (Optimal) Not implementable, but useful as a benchmark

NRU (Not Recently Used) Crude

FIFO (First-In, First Out) Might throw out useful pages

Second chance Big improvement over FIFO

Clock Better implementation of second chance

LRU (Least Recently Used) Excellent, but hard to implement exactly

NFU (Not Frequently Poor approximation to LRU

Used)

Aging Good approximation to LRU, efficient to
implement

Working Set Somewhat expensive to implement

WSClock Implementable version of Working Set

Modeling Page Replacement

Page: 0 1 2 3 0 1 4 0 1 2 3 4

Youngest page 0O|1|2(3|0|1(4|4|4]|2|3]|3
I O|1(2|3|0f1|1|1|4|2]|2

Oldest page o|1(2|3|0|0|0|1|4]|4

¢ FIFO replacement on reference string
012301401234

¢ Page replacements highlighted in orange

Belady’s Anomaly

Page: 0 1 2 3 0 1 4 0 1 2 3 4

Youngest page 0(1|2|3|3|3|4(0[1]|2|3|4
O|1(2|2|2|3(4|0]|1|2]|3

o111 (2|3|4|0|1]2

Oldest page o(0|0|1|2|3|4|0]|1

¢ Try to reduce the number of page faults by supplying more
memory

e Use previous reference string and FIFO algorithm
¢ Add another page to physical memory (total 4 pages)

Local vs. Global Allocation

Last access time

- 12 Local

allocation

6/14/2009

Page Fault Frequency

Page faults/sec

Number of page frames assigned

Page Size

* For larger pages
— Smaller page tables
— Less frames in memory (smaller degree of
multiprogramming?)
— Internal fragmentation
e For smaller pages
— Bigger page table
— More levels of page tables
— Less wasted space

I- and D-Spaces

Instructions

221

Data

CIITIITEET]

CLILLIIII®

Data

LLECEEITET

Code
—

Code

Page Sharing

Map multiple pages to a single frame

When to Write to Disk

Now or later?

Implementation

* Process creation

* During process execution
¢ Page fault time

* Process termination time

6/14/2009

Handling a Page Fault

1. Determine faulting virtual address

2. If the page is invalid, grow stack or heap,
alternatively SEGFAULT on error

3. If physical memory is full, choose a frame to
evict

4. Write frame to disk if dirty
5. Load requested page into now empty frame

Backing Store

Main memary

(a)

Main mamory Disk

Segmentation

