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Abstract. One of the original goals of intelligent educational systems
was to guide each student to the most appropriate educational content. In
previous studies, we explored both knowledge-based and social guidance
approaches and learned that each has a weak side. In the present work,
we have explored the idea of combining social guidance with more tra-
ditional knowledge-based guidance systems in hopes of supporting more
optimal content navigation. We propose a greedy sequencing approach
aimed at maximizing each student’s level of knowledge and implemented
it in the context of an open social student modeling interface. We per-
formed a classroom study to examine the impact of this combined guid-
ance approach. The results of our classroom study show that a greedy
guidance approach positively affected students’ navigation, increased the
speed of learning for strong students, and improved the overall perfor-
mance of students, both within the system and through end-of-course
assessments.

Keywords: personalized guidance, open social student modeling, adap-
tive navigation support, E-learning, Java programming

1 Introduction

One of the original goals of intelligent educational systems was to guide each
student to the most appropriate educational content. Starting with the first
reported ITS system SCHOLAR [7], a range of knowledge-based guidance tech-
nologies have been reported. Different technologies in this group include instruc-
tional planning [1], course sequencing [3], course generation [14], and adaptive
navigation support [2]. All these knowledge-based approaches were based on the
same principles: by using a combination of domain models, course goals, and
overlay student models, the sequencing engine decides which content is the most
appropriate for an individual student at any given moment and delivers it to the
student through the interface, which either directly brings the student to the
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right content (as in sequencing), or delivers the content through suggested links
(as in course generation and navigation support). Despite the known power of
this technology, there are few practical applications, due to the large amount of
effort required to build the domain models and analyze the content.

In our recent research, we discovered and evaluated a new approach to guide
students to the “right” content, based on the ideas behind open social student
modeling (OSSM) [10]. OSSM is a recent expansion of open student modeling
(OSM), a popular approach that makes traditionally hidden student models
available for students to explore [5,11,13]. OSM is known for its ability to increase
student engagement, motivation, and knowledge reflection. The goal of OSSM
is to integrate its cognitive aspects with social aspects by allowing students to
explore each others’ models or to view a cumulative model of the class [4]. In our
studies, we explored several versions of a visual OSSM, based on comparative
visualization of the student’s own open knowledge model and the models of
students with similar learning goals. While our original goal was to increase
student engagement, which is a known value of social approaches, our studies
have also demonstrated the navigational support power of OSSM. Our system
was able to guide students to the most appropriate self-assessment problems
[10] almost as efficiently as the knowledge-based guidance that we previously
explored [9]. Since the main power of OSSM comes from the overall community
of learners, it also requires considerably simpler domain and user models in order
to reach maximum efficiency. However, our studies also revealed that the OSSM
approach can make students more conservative in their work with content, which
decreases the ‘personalization’ power of such ‘social’ guidance.

This paper explores the idea of combining social guidance with more tradi-
tional knowledge-based guidance in the hope of supporting more optimal con-
tent navigation. This idea was motivated by the success of hybrid approaches
in recommender systems that demonstrated several efficient ways to combine
content-based and collaborative filtering approaches [6]. We introduce a greedy
sequencing approach for selecting learning activities that could maximize stu-
dent’s level of knowledge, and demonstrate the ways in which this approach
could be implemented in the context of OSSM. We also present a classroom
study that examines the added impact of this combined guidance approach.

The remainder of this paper presents the sequencing approach and its imple-
mentation in the OSSM interface and reports the results of the evaluation. We
conclude with a discussion of the results and plans for future work.

2 Adaptive Sequencing in the Context of OSSM

In our study, adaptive guidance was implemented in the context of a specific
OSSM interface called Mastery Grids. To explain the technology, we will start
with a brief presentation of Mastery Grids, follow by explaining how the sugges-
tions generated by the sequencing algorithm were added to the OSSM interface,
and finally explain the details of our specific sequencing approach, which we call
Greedy Sequencing.
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2.1 Mastery Grids, an OSSM Interface

Mastery Grids is an OSSM interface that combines a visual open student model
presentation with an interface to access online course materials. The design of
Mastery Grids was informed by our earlier studies of OSSM [10], where we discov-
ered that students achieve higher success rates and engage with non-mandatory
content more frequently in the presence of OSSM. A classroom study confirmed
these effects for the first version of Mastery Grids [12].

Figure 1 shows a screenshot of the Mastery Grids interface. The system
organizes course content into topics, which are displayed as columns of the grid.
The first row shows the current student’s topic-by-topic knowledge progress by
using shades of green in different densities; the darker the color, the higher
the progress. The third row shows the aggregated progress of the rest of the
students of the class in shades of orange. The second row presents a differential
color that compares the current student’s progress to the overall class progress.
For example, in Figure 1, the student shows a higher progress than the rest of
the class in most of the topics where the cells in the second row are green, but
the class has advanced farther in two of the topics (13th and 20th column) where
the cells in the second row are orange. The student has the same progress as the
class in the four topics shown in a light gray color (11th, 15th, 18th, and 19th
column). By clicking in a cell, the student can access the content that falls inside
the topic. For example, in Figure 1, the student has clicked the topic Classes,
and the system displays cells to access questions and examples related to this
topic. Additionally, by clicking the button “Load the rest of learners”, a grid
shows an anonymized, ranked list of individual student models (Figure 2).

2.2 Enhancing OSSM Interface with Sequencing

To implement adaptive sequencing in the context of the Mastery Grids interface,
we used the top three content item recommendations generated by the adaptive
sequencing approach and displayed their presence in the topic using red stars
that appear on both recommended items and the topics that they contain. The
size of the stars shows the position of the recommended items in the top-three
list. Note that our approach to sequencing is consistent with the navigational
support nature of the interface: it does not force students to go to the sequenced
content, but simply informs the students and helps them to make their next
navigational step. The resulting interface combines the social guidance of OSSM
with the personal guidance that sequencing provides.

2.3 Greedy Sequencing

The intelligence behind the sequencing interface is provided by a sequencing
algorithm that we call greedy sequencing (GS). This algorithm was specifically
developed to compensate for the conforming nature of the OSSM on student
navigation. The goal of GS is to guide students through learning materials by
proactively recommending student activities that could maximize the chance to
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Fig. 1. The presentation of recommendations in the context of Mastery Grids’ OSSM
interface; a cell with a star symbol represents a recommended item

Fig. 2. List of peer models ordered by progress on topics in the course. The student
with the highest progress appears at the top of the list. This list is anonymized and
the current student can see herself in the position that she has obtained, according to
her topic-based progress. In this case, the student, who is shown by the label “Me”, is
in position 10.
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gain new knowledge while avoiding content that is too complex for the student
to comprehend. As with other knowledge-based sequencing approaches, GS uses
information about concepts associated with content: more specifically, it focuses
on prerequisite and outcome concepts for each activity. Prerequisites are the
concepts that students need to master before starting to work with a given
activity. Outcomes are the concepts that are being learned in the process of
work with the activity. In our work, all concepts associated with an activity
were determined using our concept parser [8]. The parser indexes the activities
with concepts of Java ontology1. The extracted concepts for each activity are
then separated into prerequisites and outcomes. In the activity, we marked a
concept as a prerequisite if it has appeared in prior topics, and as an outcome if
it is the first topic where the concept appears.

The GS algorithm ranks activities by balancing the knowledge level of each
student in the prerequisite concepts with the knowledge that can be gained from
the outcome concepts. The rank of an activity is calculated using (1) based on
the student’s level of knowledge in the prerequisite and outcome concepts of that
activity:

R =
npP + noO

np + no
(1) P =

np∑
i

kiwi

np∑
i

wi

(2) O =

no∑
i

(1 − ki)wi

no∑
i

wi

(3)

where np and no are the number of prerequisite and outcome concepts in the
activity, respectively; P represents the amount of known prerequisites and is
calculated as the weighted average of student’s knowledge in the prerequisite
concepts of the activity; and O represents the amount of unknown outcomes
and is calculated as the weighted average of knowledge that is not learned in
each of the outcome concepts. These two variables can be calculated using (2)
and (3), respectively.

In (2) and (3), ki is the student’s level of knowledge of the concept i, has
the minimum value of 0 (no knowledge) and asymptotically reaches 1 (maximum
knowledge). The term 1−ki in (3) is the amount of knowledge that is not learned
in the outcome concept i. The wi is the smoothed weight of the concept obtained
by performing a log function on TF-IDF values of the concepts. The rank R of
an activity lies in the interval [0, 1] with 1 representing the highest rank.

3 Study Design

To explore the effect of GS on student navigation and performance, we ran a
classroom study in an undergraduate course of Object-Oriented Programming
& Data Structures offered by the Computer Science Engineering program of the
Arizona State University in fall 2014. The course focused on data structures with
Java. In this course, the Mastery Grids interface extended with GS was used to

1 http://www.sis.pitt.edu/~paws/ont/java.owl

http://www.sis.pitt.edu/~paws/ont/java.owl
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access supplementary course materials. A total of 143 students were enrolled in
the course. The instructor informed the students about the learning materials
that could be accessed using the Mastery Grids interface. The instructor encour-
aged students to explore this content, but indicated that the use of this system
was not mandatory.

To investigate how students navigated both with and without the presence
of the sequencing, we split the course into two parts. Part 1, from Aug. 21 to
Sep. 25, used the Mastery Grids system with no sequencing. In part 2, from Sep.
26 to Oct. 21, sequencing was enabled. At the beginning of the course, students
took a pretest to evaluate their initial knowledge of Java programming concepts.
To measure the students’ knowledge gain, a post-test was administered on Oct.
21. The pretest and post-test had the same set of questions and the score ranged
from 0 to 21. At the end of the semester, we collected questionnaires that asked
students to report their opinions on the sequencing used in the Mastery Grids
system.

The course’s learning materials included parameterized questions on the se-
mantics of Java, administered by the QuizJET system [9], and annotated code
examples, administered by the Webex system. The parameterized nature of se-
mantics questions allowed students to attempt to answer the same question sev-
eral times, each time with a different parameter. As a result, the correct answer is
different across attempts on the same question. An annotated code example is a
complete program that has an expert’s annotation (comments and explanations)
for some lines of code. Students could interactively explore these annotations by
clicking on the annotated lines. The learning materials were organized into top-
ics defined by the course instructor. Overall, the course contained 111 questions
and 103 examples spread over 19 topics.

4 Evaluation

We collected student logs for the analysis period between the pretest and the
post-test. The data consisted of students’ attempts at topics and activities, as
well as information that showed whether attempted topics and activities (ques-
tions or examples) were recommended by the system or not. We removed all
sessions with a duration of less than 30 seconds from the data. Then, we ex-
cluded students that were not sufficiently active in the system by discarding the
data of those who had fewer than 30 attempts on questions, i.e. about 1

4 th of
the available questions. In total, 86 students used the system during the analysis
period. Out of this number, there were 21 students with no attempt to solve
questions and 12 students with less than 30 attempts on questions. After dis-
carding data from these less active students, we had data from 53 students for
our analysis.

4.1 Navigational Pattern Analysis

While the OSSM interface demonstrated a good ability to move the students
along the common path through the topic sequence in a timely fashion, the
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goal of the GS algorithm was to help the students in breaking out from the
common path when it is personally beneficial and to have students not spend
too much time on topics that they have already sufficiently mastered, while also
making sure that knowledge from previous topics is adequately mastered. To
see to what extent the GS encouraged non-sequential navigation, we classified
students’ moves from current to next activity into four groups (patterns):

– Within-Topic: moving between activities in the same topic
– Next-Topic: moving from an activity in a topic to the activity in the next

topic (according to the sequence of topics in the course)
– Jump-Forward: jumping to an activity in a topic that is two or more steps

further away from the current topic
– Jump-Backward: jumping to an activity in an earlier topic

The Within-Topic and Next-Topic groups represent sequential navigation, and
the Jump-Forward and Jump-Backward groups represent non-sequential navi-
gation.

Table 1 shows the frequency of each pattern in the three contexts: part 1
(with no sequencing) and part 2 (with sequencing) separating student navigation
to Not-recommended (part 2-N) and Recommended activities (part 2-R). The
relative frequencies of the four patterns in each context are shown in Figure 3.
The value in each cell is the probability (relative frequency) of the corresponding
pattern in the corresponding context. A light blue color in the cell denotes a lower
probability and a dark blue cell denotes a higher probability.

According to this table, when students make navigation decisions without se-
quencing (Part 1) or ignore it entirely (Part 2-N), they mostly follow a sequential
pattern, working Within-Topic until they feel that their knowledge is sufficient
and then moving to Next-Topic. This shows that students tend to attempt most
of the activities in the topic before moving to the next topic, even if it is not the
best strategy to improve their overall knowledge. The OSSM does hint to the
students when it’s time for them to move, but its guidance is quite conservative,
since it is defined by the class as a whole. On the other hand, when students
follow GS recommendations, their “groupthink” stay on the current topic short-
ens considerably, as students move to the next topic more quickly and expand
their non-sequential navigation. There is good evidence in our study that the GS

Table 1. Frequencies of the four topic-based navigational patterns in part 1 (with no
sequencing), and part 2 (with sequencing). Part 2-N and Part 2-R represent activities
in part 2 that were Not recommended and Recommended, respectively.

Pattern Part 1 Part 2-N Part 2-R

Within-Topic 1801 4569 451
Next-Topic 431 689 189
Jump-Forward 216 287 162
Jump-Backward 219 328 161

Total 2667 5873 963
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Fig. 3. Relative frequencies of four topic-based navigational patterns in part 1, not
recommended items in part 2-N, and recommended items in part 2-R

promotes non-sequential navigation. However, we cannot conclude whether fol-
lowing the recommendations made by sequencing could benefit learning by more
efficiently directing students to relevant activities. We examine this question in
the next section.

4.2 The Value of GS: Amount of Learning and Speed

The mere presence of personalized guidance is not sufficient to provide an impact:
what matters is whether the students choose to follow the guidance or to ignore
it. We examined the added value of GS by comparing the amount of learning and
learning speed of students who did not follow the guidance (non-followers) to
the ones who did (followers). To achieve this goal, we used normalized learning
gain and learning speed as our evaluation measures. The normalized learning
gain (nGain) is defined as the actual gain divided by the possible gain and
is obtained using the score of the student on both the pretest and post-test.
The speed of learning is defined as the ratio of normalized learning gain to
the number of questions student attempted between the pretest and post-test
(nGain/nq). We multiplied this number by 100 to express it as a percentage
(%speed). To separate non-followers from followers, we calculated the following
ratio per student that represents the fraction of activity accesses made when
following recommendations. This ratio considers attempts on questions made in
the second part of the study, when sequencing was available.

Figure 4 shows the distribution of the following ratio. As we can see from
the skewed distribution, most of the students have a ratio of 0.2 or less; namely,
they had followed a recommendation in less than 1

5 th of their attempts. We
selected 1

5 as the cut-off for separating non-followers from followers. The non-
followers group consists of 36 students with a following ratio of less than 1

5
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Fig. 4. Histogram of the following ratio of the students who participated in the study

and the followers group contained 17 students with a following ratio of greater
than or equal to 1

5 . There were 8 students in the non-followers group and 6 in
the followers group who either had a missing pretest or post-test, or seemed
not motivated to work seriously on the post-test, as they got a lower score on
the post-test than they did on the pretest. We filtered out those students and
finally had 28 and 11 students left in the non-followers and followers group,
respectively. We found that there were no significant differences between the
groups, as far as the normalized learning gain. The speed of learning was higher
among the followers (M = 0.97%, SD = 0.88%) than the non-followers (M =
0.54%, SD = 0.27%) but only reached borderline significance when compared to
the non-followers group (p = .083 using a Welch t-test).

Since learning gain and learning speed might vary across students with dif-
ferent prior knowledge, we also separately compared followers and non-followers
with low and high prior knowledge. If the pretest was less than the median of
pretest scores, i.e. 11, a follower/non-follower was labeled as low pretest, other-
wise it was labeled as high pretest. Table 2 provides a more detailed summary of
these two parameters, as followers and non-followers within the low and high
pretest score groups. The t-test was used in all of the comparisons, since para-
metric statistics assumptions were held.

We found that the mean of the normalized learning gain was not significantly
different across non-followers and followers with low or high pretest scores,
but that the speed was much higher for followers and reached a significant
difference for students with high pretest scores. This implies that the GS may
provide an efficient guidance that leads to a shorter learning path, at least for
students with higher pretest scores. While this result seems promising, we have
to account for other possible explanations given the design of our study. For
example, since students were not randomly assigned to conditions, it is possible
that the students who followed recommendations were more diligent students, so
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Table 2. Mean±SD of evaluations measures for non-followers & followers separated
by pretest group

Low pretest (n=20) High pretest (n=19)

Non-followers
(n=14)

Followers
(n=6)

p-value
Non-followers

(n=14)
Followers

(n=5)
p-value

ngain 0.51±0.28 0.42±0.19 .440 0.48±0.26 0.46±0.29 .870
%speed 0.55%±0.34% 0.97%±0.88% .128 0.54%±0.27% 1.02%±0.70% .039 ∗

Significance level ∗ :< .05

that their improved performance was due to a selection effect known as ‘selection
bias.’ For this reason, the above analysis needs another evaluation, and we hope
to address this concern in a future study.

4.3 The impact of the GS on System and Class Performance

To see the effect of attempts suggested by sequencing on student performance,
we fitted mixed models to predict the performance of the students in (1) at-
tempts on self-assessment questions in the system (in-system performance), and
(2) final exam taken at the end of the term (out-of-system performance). In all
models, a random effect was included to account for unobserved variations be-
tween students. The models used the filtered data that had attempts from 53
active students (see Section 4).

To identify the influence of the GS on student in-system performance, we
explored whether the student had a higher chance to answer the question cor-
rectly if it was suggested by GS. The variables of interest were (1) correctness
of attempt, a binary variable that shows a correct or incorrect answer; and (2)
attempt type, which shows whether an attempt was offered by sequencing or not.
We fitted a logistic mixed effects model with attempt type as the fixed effect and
correctness of attempt as the response variable. The collected data in part 1 (no
sequencing) and part 2 (with sequencing) of the study consisted of a total of 5760
attempts on questions, from which 5275 were not offered by the GS and 485 were
offered by the GS. The results indicated that the attempt type was a significant
predictor of overall correctness (χ2(1, 5760) = 14.17, p < .001). The success was
more frequent for questions recommended by the GS: the odds of having the
correct answer when a question was offered by GS was 1.59 (SE = 0.19) times
the odds of having the correct answer when a question was not offered by GS.
This indicates that the GS guided students to questions at the proper difficulty.

To identify the influence of the GS on student out-of-system performance, we
explored how the work in the system affected the score on the final exam, which
ranges from 0 to 100. To address this question, we used the filtered data and
separately counted the total number of attempts on activities both recommended
by the GS and not recommended by the GS made by 40 students who had taken
the final exam and used the system. We considered mixed models for predicting
the score with a different set of predictors: (NQ), the total number of attempts on
questions not recommended; (NQGS), the total number of attempts on questions
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Table 3. Summary of the model fits for predicting student scores on the final exam

Model A Model B
β ± SE β ± SE

Intercept 68.50±6.24∗∗∗ Intercept 68.84±5.37∗∗∗

NQ 0.11±0.06 NA 0.06±0.03∗

NQGS 0.69±0.30∗ NAGS 0.56±0.24∗

Significance level ∗ :< .05;∗∗ :< .01;∗∗∗ :< .001

recommended by the GS; (NA), the total number of attempts on activities
(questions or examples) not recommended; and (NAGS), the total number of
attempts on activities (questions or examples) recommended by the GS. Table
3 reports a summary of the estimated effects for the two fitted models: A and
B. An interesting finding was that in Model A, the total number of questions
accessed by the recommendations of the GS (NQGS) was significantly related
to the student’s final exam score. Attempting one question recommended by the
GS was associated with an increase of 0.69 (or 0.69%) in the final exam score
(SE = 0.30, p = .019). Model B also showed significant support for both the
total number of attempts on activities that were not recommended (NA) and
activities that were recommended by the GS (NAGS): attempting one activity
recommended by the GS was associated with an increase of 0.56 (or 0.56%) in
the final grade (SE = 0.24, p = .017). At the same time, attempting one activity
that was not offered was associated with a much lower increase of 0.06 in the
final score (SE = 0.03, p = .045). In other words, working on both recommended
and not recommended activities positively influenced the student’s final exam
score; however, the impact of activities that were recommended by GS was about
9 times greater than the activities that were not recommended.

5 Subjective Evaluation

At the end of the term, we administered a questionnaire that consisted of six
questions about the recommendation features in the Mastery Grids system with
answers in a 5-point Likert Scale (1:Strongly Disagree to 5:Strongly Agree). The
questions are listed in Table 4 and the distribution of the answers is shown in
Figure 5(a). Out of 95 students who participated, we kept only the answers of
51 students who used the system at least once.

As the data shows, students seemed to agree that they like to receive rec-
ommendations (Q1 : M = 4.10, SE = 0.11) and that the use of red stars to
represent recommendations was clear (Q2 : M = 3.86, SE = 0.14). They also
disagreed that recommendations were distracting (Q5 : M = 2.41, SE = 0.15).
At the same time, it was less clear to them why some content was recommended
(Q4 : M = 3.82, SE = 0.15), and they were interested to know the reasons
why such recommendations were made (Q6 : M = 4.20, SE = 0.11). When we
made a more detailed comparison between followers and non-followers, we no-
ticed that followers (M = 4.60, SE = 0.131, N = 15) were even more curious
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Table 4. Subjective evaluation questions

# Question

1 In general, I would like the system to recommend me topics & content to focus on
2 It was clear to me that red stars were recommendations
3 Recommendations that I received this semester in Mastery Grids were useful for me
4 I could not understand why some topics and content areas were recommended to me
5 Recommendations distracted me from planning my work
6 It would be useful to see why some topics or content areas were recommended to me

0% 
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80% 
90% 

100% 

1 2 3 4 5 6 

Strongly disagree 
Disagree 
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Fig. 5. (a) Distribution of answers by question, (b) Average score by question for
followers and non-followers, (c) Average score by question for pretest groups
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than non-followers (M = 4.07, SE = 0.135, N = 30) to know why some topics
or contents were recommended (see Figure 5(b)). This difference was significant
when using a Mann-Whitney test (U = 133.5, p = .012).

Furthermore, we found that while the average class opinion was somewhat
neutral on the overall usefulness of the recommendations (Q3 : M = 3.06, SE =
0.16), students with low pretest scores gave significantly higher scores to the
usefulness of the sequencing (Q6 : M = 3.50, SE = 0.24, N = 22) than students
with high pretest scores (Q6 : M = 2.79, SE = 0.22, N = 24). This difference
was also significant when using Mann-Whitney test (U = 173.5, p = .037) (see
Figure 5(c)). This is an indication that the GS guidance helped students with
lower scores as well.

6 Discussion and Future Work

This paper investigated the added value of knowledge-based guidance in the
context of open social student modeling (OSSM). We presented a greedy se-
quencing (GS) approach that attempted to maximize student knowledge and
demonstrated how it was implemented through the use of Mastery Grids, an
OSSM interface for accessing learning materials. The evaluation of this com-
bined approach provided several interesting findings.

The proposed approach encouraged non-sequential navigation patterns that
guided weaker students to not-mastered materials in previous lectures and ad-
vanced stronger students to master materials in future lectures. As a result,
it increased the learning speed of stronger students, which led these students
to more optimal content navigation. In addition, we observed that the amount
of work with materials selected by a proposed approach was associated with
achieving considerably higher scores on the final exam. Although this does not
mean that the proposed approach caused a higher grade on the final exam in
every case, it still shows promising perspectives that could be further explored
in future studies.

In future studies, we hope to address the limitations present in this study.
First, it was focused on the domain of Java programming. Although the proposed
GS approach can be adapted to other domains, more research is required before
the findings of this study could be generalized. Second, the subjects in our study
were undergraduate students who already knew the basics of Java programming.
This could, in fact, explain the reason why relatively few students followed the
guidance in our study. We need to plan a future study in an introductory Java
course, where sequencing assistance is likely to be more critical. Finally, the
survey report demonstrated that the interface needs to be modified in order to
encourage students to follow recommendations. We would also like to increase
the transparency of the proposed approach by increasing student awareness of
the reasons to recommend specific learning content.
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