
Assessing Programming Behaviors Through ECD

Assessing Programming Behaviors Through Evidence-Centered Design

Roya Hosseini

Intelligent Systems Program

University of Pittsburgh

Advisor: Dr. Peter Brusilovsky

June 7, 2016

Assessing Programming Behaviors Through ECD 2

Assessing Programming Behaviors Through Evidence-Centered Design

Over the last 10 years, the popularity and use of systems for automated assessment of

programming assignments have been growing constantly. From the pioneer Ceilidh (Benford et

al., 1993) to the modern Web-CAT (Edwards et al., 2008), these systems offer instructors and

students highly valuable functionality: the ability to assess the correctness and other important

features of student programs without investing a lot of manual labour. Because of this

functionality, these systems have enabled instructors to increase the number of programming

assignments in a regular course and offer multiple submission attempts for each assignment

(Douce et al., 2005).

However, another important impact of automatic assessment systems is being discussed

much more rarely: their ability to increase our understanding of how humans solve programming

problems. Course by course, automatic assessment systems accumulate many program

submissions. These submissions open a window on students’ problem solving process on both

the personal and community levels. On the personal level, the analysis of single student program

submissions could reveal programming behavior—how the student progresses to the correct

solution through several incorrect solutions and how his or her knowledge grows from

assignment to assignment. On the community level, the analysis of submissions for a single

problem could reveal multiple correct and incorrect ways to solve the same problem.

Active work on community-level analysis has already started, propelled to a large extent

by the availability of the very large volume of problem solutions collected by several

programming massive open online courses (MOOCs) that apply automatic assessment. Two

interesting papers demonstrate how the MOOC data could be used to analyze the landscape of

students’ solutions for individual problems (Huang et al., 2013; Piech et al., 2012), while another

Assessing Programming Behaviors Through ECD 3

shows how these data could be used to build an intelligent scaffolding system (Rivers &

Koedinger, 2013).

This paper contributes to the analysis of program submission on the personal level. We

use evidence-centered design (ECD) to describe how to assess programming behavior by

analyzing students’ program construction activities. We describe the main components of the

ECD framework and explain how identifying programming behavior can map onto these layers.

We then discuss the findings from our first attempt at identifying students’ programming

behavior, elaborate on the implications of our approach, and close with future directions for this

research.

The Components of Evidenced-Centered Design

What We Are Measuring: The Student Model

Focal Construct

The focal construct addressed in this design framework is problem solving in the domain

of programming. Understanding and identifying factors that affect students’ programming skills

have been of interest to computer science educators for decades. Work on identifying traits that

indicate a tendency to be a successful programmer dates back to the 1950s (Rowan, 1957). Since

then, dozens of factors have been investigated, such as aptitude in mathematics (Byrne & Lyons,

2001; White & Sivitanides, 2003) and science subjects (Byrne & Lyons, 2001), intrinsic

motivation and comfort level (Bergin & Reilly, 2005), and learning styles (Thomas, Ratcliffe,

Woodbury, & Jarman, 2002). More recent research, however, has suggested that many of the

factors might be context specific, thus encouraging researchers to consider data-driven

approaches to investigate students’ ability to solve programming problems (Watson, Li, &

Godwin, 2014). One such approach is the collection and analysis of online protocols, which

Assessing Programming Behaviors Through ECD 4

typically involve gathering information by augmenting the programming environments students

use to write, compile, and test their programs (Tabanao, Rodrigo, & Jadud, 2011).

So far, programming trace logs have been used to understand student coding behavior or

abilities (Blikstein, 2011; Hosseini, Vihavainen, & Brusilovsky, 2014; Watson et al., 2014),

model student’s knowledge in a program development context (Yudelson, Hosseini, Vihavainen,

& Brusilovsky, 2014), and predict student success (Vihavainen, 2013; Vihavainen, Luukkainen,

& Kurhila, 2013) and grade performance (Murphy, Kaiser, Loveland, & Hasan, 2009). The focus

of this paper is on the first application, using trace logs to understand student programming

behavior.

Understanding programming behaviors using observational data collected from students’

problem solving activities is beneficial for both instructors and students. It enables instructors to

better address concepts that students find difficult to grasp or are having misconceptions about

(Tabanao et al., 2011). More important, according to Tabanao and colleagues, it helps identify

and provide targeted help and proper intervention for struggling students who have a tendency to

become discouraged and frustrated by their mistakes and thus give up after some trials and

failures. Therefore, identifying programming behavior may help mitigate students’ frustration

and confusion, increase programming comprehension, and contribute to greater student retention

in the course. In addition to these benefits, this information could be used to provide proactive

recommendations and suggestions for all students, such as how long to expect an assignment to

take or what errors to look out for (Murphy et al., 2009).

This paper describes a data-driven programming behavior assessment, introduced in

Hosseini et al. (2014) from the perspective of ECD. This approach resulted in a deep conceptual

analysis of students’ intermediate programming steps and thus captured students’ coding

Assessing Programming Behaviors Through ECD 5

behavior better than approaches that consider only the end result of the code or errors made

during coding.

Knowledge, Skills, and Abilities (KSAs)

The common confounding factors (i.e., knowledge, skills, and abilities) that affect

students’ programming are as follows.

• Prior programming experience (Byrne & Lyons, 2001): Students with prior

experience in programming are likely to outperform students with limited experience.

• Aptitude in mathematics (Byrne & Lyons, 2001; White & Sivitanides, 2003) and

science subjects (Byrne & Lyons, 2001): Subjects who have math and science

aptitude are more likely to have programming skill.

• Intrinsic motivation and comfort level (Bergin & Reilly, 2005): Students who are

more intrinsically motivated than extrinsically motivated perform better. Furthermore,

the level of intrinsic motivation appears to have a positive effect on performance,

with higher intrinsic motivation resulting in better programming results. Students

with higher scores on the self-esteem scale will perform better in programming than

students with lower scores.

These factors affect students’ programming success or skill and thus could influence how they

manifest programming behavior while solving a programming problem. We expect that as prior

experience, aptitude in mathematics/science subjects, motivation, and self-esteem grow, the

student’s programming behavior will change to incremental development with less propensity

for struggling behavior.

Assessing Programming Behaviors Through ECD 6

Where We Measure It: The Task Model

Characteristic Features of the Task

The task was to write a program for a series of problems in the programming domain of

interest. The program that a student writes for a given problem was analyzed in an environment

that can (a) evaluate the program code against a suite of tests designed for that problem and (b)

provide instant feedback to the student about the correctness of his/her program. To understand

how a student develops code for a given problem, this environment should allow for

resubmission of a program or should automatically capture the intermediate steps of program

development at certain time intervals or, for instance, each time student saves a code.

An example of the task was for students to write a program that receives as input two

numbers from a user and then prints out the larger of the two. We refer to this as the Bigger

Number problem. The student’s program was analyzed via three tests that verified that the output

was right when the first number was smaller than the second (Test 1), the output was right when

the second number was smaller than the first (Test 2), and the student did not print anything

unnecessary (Test 3).

Variable Features of the Task

The environment keeps track of student program development via snapshots that are

recorded every time the student saves the code, runs the code, runs tests on the code, or submits

the code for grading. Snapshots can be captured in a coarse-grained or fine-grained manner.

Coarse-grained capturing takes into account the code only at submission, that is, at the final step

when the student has a code for the problem and wants to test it. Fine-grained capturing, on the

other hand, requires the student to write code in an integrated development environment or

platform that is able to track the intermediate steps of development. An example of fine-grained

Assessing Programming Behaviors Through ECD 7

capturing is implemented in a service called Test My Code (Vihavainen, Vikberg, Luukkainen,

& Pärtel, 2013). Test My Code contains a NetBeans plug-in that automatically downloads the

exercises to the student’s machine, has the capability to gather snapshots from the students’

programming process, and provides a backend server for assessing students’ work. This plug-in

records snapshots (time, code changes) every time the student saves code, runs code, runs tests

on the code, or submits the code for grading.

An example of snapshots of a typical student is in Figure 1 for the Bigger Number

program. The student first wrote a program (Figure 1a) that passed Test 1 Test 2 when the first

number was smaller than the second or vice versa. However, it did not pass Test 3 because it

printed additional information when the second number was smaller than the first. After

receiving this feedback, the student expanded the code by adding the “else if” statement (Figure

1b). Then the program also passed Test 3 because it did not print any unnecessary outputs when

the numbers differed.

(a)

(b)

Figure 1 - ‘Bigger Number’ program of a student: (a) first snapshot, (b) second snapshot

import java.util.Scanner;
public class BiggerNumber {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.println("Type a number: ");
 int firstNumber = Integer.parseInt(input.nextLine());
 System.out.println("Type another number: ");
 int secondNumber = Integer.parseInt(input.nextLine());
 if (firstNumber > secondNumber)
 System.out.println("\nThe bigger number of the
 two numbers given was: " + firstNumber);
 if (firstNumber < secondNumber)
 System.out.println("\nThe bigger number of the
 two numbers given was: " + secondNumber);
 else
 System.out.println(“\nNumbers were equal: ");
 }
}

import java.util.Scanner;
public class BiggerNumber {
 public static void main(String[] args) {
 Scanner input = new Scanner(System.in);
 System.out.println("Type a number: ");
 int firstNumber = Integer.parseInt(input.nextLine());
 System.out.println("Type another number: ");
 int secondNumber = Integer.parseInt(input.nextLine());
 if (firstNumber > secondNumber)
 System.out.println("\nThe bigger number of the
 two numbers given was: " + firstNumber);
 else if (firstNumber < secondNumber)
 System.out.println("\nThe bigger number of the
 two numbers given was: " + secondNumber);
 else
 System.out.println(“\nNumbers were equal: ");
 }
}

Assessing Programming Behaviors Through ECD 8

Each problem in the task can have different levels of complexity, indicating its intrinsic

difficulty. The levels of difficulty could alternate between easy, moderate, and complex. Intrinsic

difficulty can be measured as a function of concepts required for the program to be correct or be

based on the student’s perception of the difficulty of the task. Another variable feature of the task

is whether the student can complete an initial code or whether he or she can start writing the

program from scratch. Thus, the initial state of the program could vary from an empty code to a

code with an initial skeleton that student has to complete.

Potential Task Products

The product of the task is the program that student has implemented for the problem. A

number of features are related to the program in each snapshot and thus could be measured.

These feature are (1) whether the code is compliable or not, (2) correctness of the student’s

program, (3) number of code lines, (3) time interval from the preceding snapshot, (4) whether the

student has requested additional support (such as hint) or accessed instructional resources while

working on the code, (5) time that student has spent on writing the code, (6) and programming

concepts the student used in the code.

How We Measure It: The Evidence Model

Potential Observations

To identify students’ programming behavior, as proposed in Hosseini et al. (2014), the

correctness and concepts of the code in each snapshot need to be determined. Correctness is

determined by compiling the code, running it against the suite of task-specific tests, and

recording the ratio of tests that were passed. For example, for the program in Figure1a, the ratio

of passed tests is 2/3 (about 0.67) because the program passed only two of the three tests. To

obtain programming concepts, the program code should be parsed using domain parsers. As of

Assessing Programming Behaviors Through ECD 9

now, parsers are available for Java (Hosseini & Brusilovsky, 2013) and Python. An example of

concepts in the snapshot code is shown in Table 1. Each concept represents a node in the

ontology of the domain.

Table 1 - Distinct concepts extracted by JavaParser for snapshot (a) and (b) of the program in
Figure 1. Differences between snapshots are in boldface.

Snapshot Extracted Concepts
(a) ActualMethodParameter, MethodDefinition, ObjectCreationStatement, ObjectMethodInvocation,

PublicClassSpecifier, PublicMethodSpecifier, StaticMethodSpecifier, StringAddition,
StringDataType, StringLiteral, LessExpression, java.lang.System.out.println,
java.lang.System.out.print, ClassDefinition, ConstructorCall, FormalMethodParameter,
GreaterExpression, IfElseStatement, IfStatement, ImportStatement, IntDataType,
java.lang.Integer.parseInt, VoidDataType

(b) ActualMethodParameter, MethodDefinition, ObjectCreationStatement, ObjectMethodInvocation,
PublicClassSpecifier, PublicMethodSpecifier, StaticMethodSpecifier, StringAddition,
StringDataType, StringLiteral, LessExpression, java.lang.System.out.println,
java.lang.System.out.print, ClassDefinition, ConstructorCall, FormalMethodParameter,
GreaterExpression, IfElseIfStatement, IfElseStatement, ImportStatement, IntDataType,
java.lang.Integer.parseInt, VoidDataType

After determining the concepts and correctness of each snapshot for a single user in each

problem that user has solved, conceptual differences between consecutive snapshots need to be

examined—i.e., which concepts were added or removed on each snapshot and how these changes

were associated with improving or lessening the correctness of program.

Potential Frameworks

To identify students’ programming behavior, submission data can be mined, particularly

by looking into sequences of concept changes in the programs as well as respective changes in

the correctness of programs. Based on the framework introduced in Hosseini et al. (2014), four

major problem solving behavior types are defined for the program writing task: (1) Builders,

who tend to incrementally build the program and improve its correctness; (2) Reducers, who tend

to reduce the concepts and increase correctness; (3) Massagers, who have long streaks of making

small program changes without changing concepts or correctness; and (4) Strugglers, who spend

Assessing Programming Behaviors Through ECD 10

considerable time attempting to pass the first correctness test; they make all kinds of code

changes but probably have too little knowledge to get the code working.

Table 2 shows how sequences of snapshots are labeled on the basis of the change of

concept and correctness in each snapshot.

Table 2- Labelling sequence of students’ snapshots based on change of concept and correctness

Correctness/Concepts Same Increase Decrease
Zero Struggler Struggler Struggler
Decrease Struggler Struggler Struggler
Increase Builder Builder Reducer
Same Massager Builder Reducer

After all snapshots have been labeled, the programming behavior of the student can be

defined on the basis of a single assignment (local behavior) or over all the assignments the

student worked on (global behavior). In either case, we define a profile for a student’s

programming behavior. The profile records the ratio of occurrence of each of the programming

behaviors (Builder, Reducer, Struggler, Massager) in the snapshots of a single assignment for the

student’s local behavior or over all assignments’ snapshots for the student’s global behavior. The

programming behavior of the student is his or her most frequent behavior— the behavior with

the highest ratio of occurrence in the student’s profile.

These programming behaviors are related to the classification of Perkins et al. for novice

problem solving behavior that classifies students as “stoppers,” “movers,” or “tinkerers” based

on the strategy they choose when facing a problem (Perkins, Hancock, Hobbs, Martin, &

Simmons, 1986). Relative to the findings of Hosseini et al. (2014), Builders roughly correspond

to “movers”; they gradually add concepts to the solution while increasing the correctness of the

solution in each snapshot. Massagers and Reducers could be considered as a mixture of movers

and tinkerers. Strugglers, on the other hand, could be considered as a mix of tinkerers and

Assessing Programming Behaviors Through ECD 11

stoppers; they may freeze on a problem (not going toward the correct solution) for a long while,

but through experimentation and movement typically end up getting the solution right.

Discussion and Future Work

This paper is an attempt to understand how students develop programs in their

assignments or programming exercises. We used ECD to describe a data-driven approach for

identifying students’ programming behavior by analyzing their program construction activities.

This approach examined the conceptual differences between consecutive steps in programming

and how these changes are associated with improving or lessening the correctness of the

program.

Our past work using this approach (Hosseini et al., 2014) indicated that for the majority

of students (77.63%) the dominant pattern was building, incrementally enhancing the program

while passing more and more tests. A number of students did it in a very different way, though.

Few students tended to reduce the concepts and increase correctness (2.05%) or had long streaks

of small program changes without changing concepts or correctness level (0.12%). Some

students (20.2%) displayed different programming behavior, showing two or more patterns (e.g.,

struggling-building, struggling-building-massaging), hinting that their behavior could change

over time.

These results point to the importance of distinguishing differences in students’

programming behaviors. Although building was the dominant behavior of a large fraction of

students, some students tended to develop programs differently. We believe that the differences

between students’ programming behavior can be used to determine when to provide remedial

help for students who struggle while developing a program. Instructors can use this information

Assessing Programming Behaviors Through ECD 12

to understand concepts that students have trouble with. We also believe that students’

programming behavior can be a useful source for accurate modeling of students’ knowledge.

For future work, we are interested in studying how information about students’

programming behaviors could be leveraged to increase the accuracy of student models. Other

future work could be to investigate how information about traits that have been used to predict

programming aptitude (such as math performance), as well as task products that were not studied

in the current approach (such as time spent on writing a code, time interval between snapshots,

etc.), influence programming behavior.

Assessing Programming Behaviors Through ECD 13

Appendix

Author
First Name Roya
Last Name Hosseini
Affiliation Intelligent Systems Program

University of Pittsburgh
E-Mail roh38@pitt.edu

Overview

Summary Briefly describe the construct, learning environment, and data used.

The construct addressed in this design framework is problem solving in the domain of programming. We
analyzed students’ program construction activities to determine how students solve programming
problems, how students progress to the correct solution through several incorrect ones, and how students’
knowledge grows from assignment to assignment. We examined conceptual differences between
consecutive snapshots and how these changes were associated with improving or lessening program
correctness.

The program that students wrote for a given problem were analyzed in an environment that can (a)
evaluate the program code against a suite of tests designed for that problem and (b) provide the student
with instant feedback about the correctness of the program. To understand how a student develops code
for a given problem, this environment should allow resubmission of a program or it should automatically
capture intermediate steps of program development at certain time intervals, such as each time the
student saves a code.

Provide seminal citations or papers on the non-cognitive construct, environment, and/or data.

• Hosseini, R., & Brusilovsky, P. (2013). JavaParser: A fine-grained concept indexing tool for Java
problems. In Proceedings of the 1st Workshop on AI-supported Education for Computer Science
(AIEDCS), 60-63.

• Vihavainen, A., Vikberg, T., Luukkainen, M., & Pärtel, M. (2013, July). Scaffolding students’
learning using Test My Code. In Proceedings of the 18th ACM Conference on Innovation and
Technology in Computer Science Education, 117-122. ACM.

• Hosseini, R., Vihavainen, A., & Brusilovsky, P. (2014). Exploring problem solving paths in a Java
programming course. In Proceedings of the 25th Workshop of the Psychology of Programming
Interest Group, 65-76.

Rationale Describe the overall importance of the construct being measured.

The research on automatic assessment of programming assignments has led to positive outcomes for
instructors and students. Many teams developed automated systems that enabled assessment of large
volumes of assignments without requiring much manual effort (Benford et al., 1993; Edwards et al.,
2008). This has resulted in changes in how programming is taught. It has also enabled instructors to
increase the number of programming assignments in a regular course and offer multiple submission
attempts for each assignment (Douce et al., 2005). Automatic assessment systems accumulate a large
number of program submissions that in turn open a window on students’ problem solving process.

Yet researchers are discussing much more rarely automatic assessment systems’ important ability to
increase our understanding of how humans solve programming problems. Submissions for a single
problem have been studied to discover multiple correct and incorrect ways to solve the problem (Huang
et al., 2013; Piech et al., 2012) or to build an intelligent scaffolding system (Rivers & Koedinger, 2013).

In the present work, we studied the less explored topic related to automatic assessment systems. We
describe a data-driven approach to using students’ submission data to understand how students solve
their programming assignments and to identify their programming behaviors.

Assessing Programming Behaviors Through ECD 14

For what purpose(s) will claims or inferences related to the construct be used?

Identification of programming behaviors using observational data collected from students’ problem
solving activities is beneficial for both instructors and students.

• It enables instructors to better address concepts that students find difficult to grasp or are having
misconceptions about (Tabanao et al., 2011).

• It helps identify and provide targeted help and proper intervention for students who are strugglers.
• Identifying student programming behavior may help mitigate student frustration and confusion,

increase programming comprehension, and contribute to greater student retention in a course
(Tabanao et al., 2011). This information can also be used to provide proactive recommendations and
suggestions to all students, for instance, on how long to expect an assignment to take or what errors
to look out for (Murphy et al., 2009).

Student Model
Focal
construct

Name the primary construct addressed by this design pattern.

The focal construct addressed in this design framework is problem solving in the domain of
programming.

Additional
knowledge,
skills, and
abilities

Identify sources of construct irrelevant variance or confounds (i.e., other knowledge, skills, or
abilities) that may affect how students manifest a construct, data quality, or measurement.

• Prior programming experience (Byrne & Lyons, 2001)
• Intrinsic motivation and comfort level (Bergin & Reilly, 2005)
• Aptitude in mathematics (Byrne & Lyons, 2001; White & Sivitanides, 2003) and science subjects

(Byrne & Lyons, 2001)

Task Model
Characteristic
features of the
task

Aspects of the task or task environment that are required to evoke evidence about the focal
construct

• The task is to write a program for a series of programming problems in the programming domain of
interest. In this paper we focus on Java programming, but the approach could be used for other
programming domains, too.

• The task environment should have the following features:
o allow resubmission of a program
o capture snapshots of a student’s program (snapshots recorded every time the student

saves code, runs code, runs tests on the code, or submits the code for grading
o can evaluate correctness of the student’s program, perhaps by running unit tests, and

provide feedback to the student, accordingly.

Assessing Programming Behaviors Through ECD 15

Variable
features of the
task

Aspects of the task or task environment that can vary, or can be intentionally varied, to affect
how students enact the focal construct

• Snapshots of the student’s program can be captured in a coarse-grained or fine-grained manner: A
coarse-grained capturing takes into account only the code at submission time, the final step when
student has a code for the problem and wants to test it. A fine-grained capturing, on the other hand,
requires the student to write code in an integrated development environment or platform that is able
to track intermediate steps of program development.

• Problem complexity, indicating intrinsic difficulty.
• The initial state of the program, which could vary from empty code to a code with an initial

skeleton that student has to complete.

Potential task
products

That which students say, do, or make that produces or contains evidence of the focal
construct.

The product of the task is the program the student has implemented for the problem. There are number
of features related to the program in each snapshot, including:
• whether the code is compliable or not
• correctness of student’s program
• number of code lines
• time interval from preceding snapshot
• whether student has requested additional support (such as hint) or accessed instructional resources

while working on the code
• time that student has spent writing the code and programming concepts student used in the code.

Evidence Model
Potential
observations

Qualities of the potential task products (e.g., excessive, limited, or correct) that can be used to
make inferences about focal construct.

To identify student’s programming behavior, as proposed in (Hosseini et al., 2014), we determined the
following features for the program in each snapshot:
• correctness of the program, obtained by compiling the code, running it against the suite of task-

specific tests, and recording ratio of tests that were passed.
• concepts that student used in the program

o For obtaining programming concepts, the program code should be parsed using domain
parsers. An example of parser for Java is in Hosseini & Brusilovsky (2013).

• conceptual differences between consecutive snapshots – which concepts were added to or removed
from each snapshot relative to the previous snapshot and how these changes were associated with
improving or lessening the correctness of the program.

Potential
frameworks

Potential frameworks (e.g., rubrics, algorithms, rules) used to interpret, judge, or
contextualize potential observations

Based on the framework introduced in Hosseini et al. (2014), four major problem solving behavior
types were defined for the programs writing task: (1) Builders, who tend to incrementally build the
program and improve its correctness; (2) Reducers, who tend to reduce the concepts and increase
correctness; (3) Massagers, who have long streaks of making small program changes without changing
concepts or correctness; and (4) Strugglers, who spend considerable time attempting to pass the first
correctness test; they do all kinds of code changes but probably have too little knowledge to get the
code working.

Thus, to identify students’ programming behavior, submission data can be mined, particularly by
looking into (a) sequences of concept changes in the programs and (b) respective changes on the
correctness of programs. The following table shows how sequences of snapshots are labeled based on

Assessing Programming Behaviors Through ECD 16

the change of concept and correctness in each snapshot.

Correctness\Concepts Same Increase Decrease
Zero Struggler Struggler Struggler
Decrease Struggler Struggler Struggler
Increase Builder Builder Reducer
Same Massager Builder Reducer

After all snapshots have been labeled, the programming behavior of the student can be defined on the
level of a single assignment (local behavior) or over all assignments student worked on (global
behavior). In either case, we define a profile for student’s programming behavior. The profile records
the ratio of occurrence of each of the programming behaviors (Builder, Reducer, Struggler, Massager)
in the snapshots of a single assignment for the student’s local behavior or over all assignments’
snapshots for the student’s global behavior. The programming behavior of the student is his or her most
frequent behavior—the behavior with the highest ratio of occurrence in the student’s profile.

Assessing Programming Behaviors Through ECD 17

References

Benford, S., Burke, E., & Foxley, E. (1993). Learning to construct quality software with the

Ceilidh system. Software Quality Journal, 2(3), 177-197.

Bergin, S., & Reilly, R. (2005). The influence of motivation and comfort-level on learning to

program. In Proceedings of the 17th Workshop of the Psychology of Programming

Interest Group, 293–304.

Blikstein, P. (2011, February). Using learning analytics to assess students’ behavior in open-

ended programming tasks. In Proceedings of the 1st International Conference on

Learning Analytics and Knowledge, 110-116. ACM.

Byrne, P., & Lyons, G. (2001, June). The effect of student attributes on success in programming.

In ACM SIGCSE Bulletin, 33(3), 49-52. ACM.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of

programming: A review. Journal on Educational Resources in Computing (JERIC), 5(3),

4, 1-13. ACM.

Edwards, S. H., & Perez-Quinones, M. A. (2008, June). Web-CAT: automatically grading

programming assignments. In ACM SIGCSE Bulletin, 40(3), 328-328. ACM.

Hosseini, R., & Brusilovsky, P. (2013). JavaParser: A fine-grained concept indexing tool for

Java problems. In Proceedings of the 1st Workshop on AI-supported Education for

Computer Science (AIEDCS), 60-63.

Hosseini, R., Vihavainen, A., & Brusilovsky, P. (2014). Exploring problem solving paths in a

Java programming course. In Proceedings of the 25th Workshop of the Psychology of

Programming Interest Group, 65-76.

Assessing Programming Behaviors Through ECD 18

Huang, J., Piech, C., Nguyen, A., & Guibas, L. (2013, June). Syntactic and functional variability

of a million code submissions in a machine learning mooc. In AIED 2013 Workshops

Proceedings Volume, 25-32.

Murphy, C., Kaiser, G., Loveland, K., & Hasan, S. (2009). Retina: Helping students and

instructors based on observed programming activities. ACM SIGCSE Bulletin, 41(1),

178-182. ACM.

Perkins, D. N., Hancock, C., Hobbs, R., Martin, F., & Simmons, R. (1986). Conditions of

learning in novice programmers. Journal of Educational Computing Research, 2(1), 37-

55.

Piech, C., Sahami, M., Koller, D., Cooper, S., & Blikstein, P. (2012, February). Modeling how

students learn to program. In Proceedings of the 43rd ACM technical symposium on

Computer Science Education, 153-160. ACM.

Rivers, K., & Koedinger, K. R. (2013, June). Automatic generation of programming feedback: A

data-driven approach. In Proceedings of the 1st Workshop on AI-supported Education for

Computer Science (AIEDCS), 50-59.

Rowan, T. C. (1957). Psychological Tests and Selection of Computer Programmers. Journal of

the Association for Computing Machinery, 4, 348-353.

Tabanao, E. S., Rodrigo, M. M. T., & Jadud, M. C. (2011, August). Predicting at-risk novice

Java programmers through the analysis of online protocols. In Proceedings of the 7th

International Workshop on Computing Education Research, 85-92. ACM.

Thomas, L., Ratcliffe, M., Woodbury, J., & Jarman, E. (2002). Learning styles and performance

in the introductory programming sequence. ACM SIGCSE Bulletin, 34(1), 33-37. ACM.

Assessing Programming Behaviors Through ECD 19

Vihavainen, A. (2013, July). Predicting students’ performance in an introductory programming

course using data from students’ own programming process. In 2013 IEEE 13th

International Conference on Advanced Learning Technologies (ICALT), 498-499. IEEE.

Vihavainen, A., Luukkainen, M., & Kurhila, J. (2013, July). Using students’ programming

behavior to predict success in an introductory mathematics course. In Proceedings of the

6th International Conference on Educational Data Mining, 300-303.

Vihavainen, A., Vikberg, T., Luukkainen, M., & Pärtel, M. (2013, July). Scaffolding students’

learning using Test My Code. In Proceedings of the 18th ACM Conference on Innovation

and Technology in Computer Science Education, 117-122. ACM.

Watson, C., Li, F. W., & Godwin, J. L. (2014, March). No tests required: Comparing traditional

and dynamic predictors of programming success. In Proceedings of the 45th ACM

Technical Symposium on Computer Science Education, 469-474. ACM.

White, G., & Sivitanides, M. (2003). An empirical investigation of the relationship between

success in mathematics and visual programming courses. Journal of Information Systems

Education, 14(4), 409-416.

Yudelson, M., Hosseini, R., Vihavainen, A., & Brusilovsky, P. (2014, July). Investigating

automated student modeling in a Java MOOC. In Proceedings of the 7th International

Conference on Educational Data Mining, 261-264

