An Evaluation of Parser Robustness for Ungrammatical Sentences

Homa B. Hashemi, Rebecca Hwa

Conference on Empirical Methods in Natural Language Processing (EMNLP), 2016

- Heavily edited texts, e.g.
 - News
 - Formal reports

- Olisier texts, e.g.
 - Microblogs
 - Consumer reviews
 - English-as-a-Second language writings (ESL)
 - Machine translation outputs (MT)

Natural Language Sentences

- Heavily edited texts, e.g.
 - News
 - Formal reports

- Olisier texts, e.g.
 - Microblogs
 - Consumer reviews
 - English-as-a-Second language writings (ESL)
 - Machine translation outputs (MT)

• Parsing is an essential NLP task to find relationship between words:

• "who did what to whom"

- Parsing is useful for many applications, e.g.
 - Information Extraction
 - Question Answering
 - Summarization
- If the parse is wrong, it would affect the downstream applications

Parsing ungrammatical sentences

- State of the art parsers perform very well on grammatical sentences
- Even a small grammar error cause problems for parsers

Robust Parser: If a parser can overlook problems such as grammar mistakes and produce a parse tree that closely resembles the correct analysis for the intended sentence

How much parsers' performances degrade when dealing with ungrammatical sentences?

- Are some parsers more robust than others?
- ② Are there some error types that cause more problems for all parsers?

Evaluation of Parser on Ungrammatical Sentences

- Manually annotated gold standards trees for ungrammatical sentences
 - Creating ungrammatical treebank is expensive and time-consuming
- **Gold standard free** approach
 - Considering parse tree of well-formed sentence as gold standard
 - We cannot use standard evaluation metrics, because
 - Words of ungrammatical sentence and its grammatical counterpart do not necessarily match

Proposed Evaluation Methodology

- Error-related dependency: dependency connected to an extra word
- Shared dependency: mutual dependency between two trees

$$\label{eq:recision} \text{Robustness} \ \text{F}_1 = 2 \times \frac{\textit{Precision} \times \textit{Recall}}{\textit{Precision} + \textit{Recall}} = 0.66$$

Compare 8 leading dependency parsers:

- Malt Parser
- 2 Mate Parser
- In MST Parser
- Stanford Neural Network Parser
- SyntaxNet
- Turbo Parser
- Tweebo Parser
- Yara Parser

Training data:

- Penn Treebank (News data): 50,000 sentences
- 2 Tweebank (Twitter data): 1,000 tweets

Test data:

English-as-a-Second language writings (ESL):10,000 sentences

- ESL Sentence: We live in changeable world.
- Corrected ESL Sentence: We live in a changing world.
- Ø Machine translation outputs (MT): 10,000 sentences
 - MT Output: For almost 18 years ago it flies in the area.
 - Post-edited Sentence: For almost 18 years it has been flying in space.

Overall Parsers Performance (Accuracy & Robustness)

- All parsers are comparably robust on ESL, while they exhibit more differences on MT
- Training conditions matter, Malt performs better when trained on Tweebank than PTB
- Training on Tweebank, Tweebo parser is as robust as others

	Train o	n PTB §	1-21	Train on Tweebank _{train}				
Parser	UAS	Robustness F ₁		UAF ₁	Robustness F_1			
	PTB §23	ESL MT		Tweebank _{test}	ESL	MT		
Malt	89.58	93.05	76.26	77.48	94.36	80.66		
Mate	93.16	93.24	77.07	76.26	91.83	75.74		
MST	91.17	92.80	76.51	73.99	92.37	77.71		
SNN	90.70	93.15	74.18	53.4	88.90	71.54		
SyntaxNet	93.04	93.24	76.39	75.75	88.78	81.87		
Turbo	92.84	93.72	77.79	79.42	93.28	78.26		
Tweebo	-	-	-	80.91	93.39	79.47		
Yara	93.09	93.52	73.15	78.06	93.04	75.83		

Tweebo parser is not trained on Penn Treebank, because it is a specialization of Turbo parser to parse tweets.

Parse Robustness by Number of Errors

To what extent is each parser impacted by the increase in number of errors?

- Robustness degrades faster with the increase of errors for MT than ESL
- Training on Tweebank help some parsers to be more robust against many errors

Impact of Grammatical Error Types on Parser Robustness

What types of grammatical errors are more problematic for parsers?

- Replacement errors are the least problematic error for all the parsers
- Missing errors are the most difficult error type

	Train on PTB §1-21					Train on Tweebank _{train}						
Parser	rser ESL			MT		ESL			MT			
	Repl.	Miss.	Unnec.	Repl.	Miss.	Unnec.	Repl.	Miss.	Unnec.	Repl.	Miss.	Unnec.
min	93.7 (MST)		92.8 (Yara)		89.4 (SyntaxNet)		87.8 (SNN)					
Malt												
Mate												
MST												
SNN												
SyntaxNet												
Turbo												
Tweebo												
Yara												
max	96.9 (Turbo)		97.2 (SNN)		97.8 (Malt)			97.6 (Malt)				

Each bar represents the level of robustness of each parser.

- Introducing a robustness metric without referring to a gold standard corpus
- Presenting a set of empirical analysis on the robustness of leading parsers
- Recommending practitioners to examine the range of ungrammaticality of input:
 - If it is more similar to tweets, Malt or Turbo parser may be good choices
 - If it is more similar to MT, SyntaxNet, Malt and Turbo parser are good choices
- The results suggest some preprocessing steps may be necessary for ungrammatical sentences, such as handling redundant and missing word errors

