
An Evaluation of Parser Robustness for Ungrammatical Sentences
Homa B. Hashemi, Rebecca Hwa
Intelligent Systems Program, Computer Science Department, University of Pittsburgh

Parsing Ungrammatical Sentences

Performance of parsers degrades on sentences that have even small
grammatical errors:

This made me get bored

This made me feel bored

ROOT

ROOT

U
ng

ra
m
m
at
ica

l
G
ra
m
m
at
ica

l

Robust Parser

If the parser can overlook problems such as gram-
mar mistakes and produce a parse tree that closely
resembles the correct analysis for the intended sen-
tence, we say that the parser is robust.

Questions

•Are some parsers more robust than others
against sentences that are not well-formed?

• In what ways does a parser’s performance
degrade when dealing with ungrammatical
sentences?

Evaluation of Parser Robustness

1 Manually annotated gold standards
• Ungrammatical treebank is not available for all domains
• Creating a treebank is expensive and time-consuming

2 Gold standard free approach
• Compare parse tree of problematic sentence against parse
tree of well-formed sentence as gold standard

• We cannot use standard metrics of comparing trees, because

• Words of ungrammatical sentence and its grammatical
counterpart do not necessarily match

• We do not want to unfairly penalize parsers when there are
extra or missing words

ESL Sentence: I appreciate all about this.
Corrected ESL Sentence: I appreciate all this.

Proposed Evaluation Methodology

• Error-related dependency: dependency connected to an extra word

• Shared dependency: mutual dependency between two trees

I appreciate all about this

I appreciate all this

ROOT

ROOT

U
ng

ra
m
m
at
ica

l
G
ra
m
m
at
ica

l

Precision = # of shared dependencies
of dependencies - # of error-related dependencies of ungrammatical sentence

= 2
5 − 3

= 1

Recall = # of shared dependencies
of dependencies - # of error-related dependencies of grammatical sentence

= 2
4 − 0

= 0.5

Robustness F1 = 2 × Precision × Recall

Precision + Recall
= 0.66

Experiments

Parser training data:
1 Penn Treebank (News data)
2 Tweebank (Twitter data)

Robustness test data:
1 English-as-a-Second Language writings (ESL)
2 Machine translation outputs (MT)

How do parsers perform on erroneous sentences?

•All parsers are comparably robust on ESL, while they exhibit more differences on MT
•Training conditions matter, Malt prforms better when trained on Tweebank than PTB
•Training on Tweebank, Tweebo parser is as robust as others

Parser
Train on PTB §1-21 Train on Tweebanktrain

UAS Robustness F1 UAF1 Robustness F1

PTB §23 ESL MT Tweebanktest ESL MT
Malt 89.58 93.05 76.26 77.48 94.36 80.66
Mate 93.16 93.24 77.07 76.26 91.83 75.74
MST 91.17 92.80 76.51 73.99 92.37 77.71
SNN 90.70 93.15 74.18 53.4 88.90 71.54
SyntaxNet 93.04 93.24 76.39 75.75 88.78 81.87
Turbo 92.84 93.72 77.79 79.42 93.28 78.26
Tweebo - - - 80.91 93.39 79.47
Yara 93.09 93.52 73.15 78.06 93.04 75.83

Tweebo parser is not trained on Penn Treebank, because it is a specialization of Turbo parser to parse tweets.

To what extent is each parser impacted by the increase in number of errors?
•Robustness degrades faster with the increase of errors for MT than ESL
•Training on Tweebank helps some parsers to be more robust against many errors

What types of grammatical errors are more problematic for parsers?
•Replacement errors are the least problematic errors for all the parsers
•Missing errors are the most difficult errors

Train on PTB §1-21 Train on Tweebanktrain

Parser ESL MT ESL MT
Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec. Repl. Miss. Unnec.

min 93.7 (MST) 92.8 (Yara) 89.4 (SyntaxNet) 87.8 (SNN)

Malt
Mate
MST
SNN
SyntaxNet

Turbo
Tweebo
Yara
max 96.9 (Turbo) 97.2 (SNN) 97.8 (Malt) 97.6 (Malt)

Each bar represents the level of robustness of each parser scaled to the lowest score (empty bar) and highest score (filled bar).

Conclusion
• Introducing a robustness metric without referring to a gold standard corpus

•Presenting a set of empirical analysis on the robustness of leading parsers

•Recommending practitioners to examine the range of ungrammaticality of input:
• If it is more similar to tweets, Malt or Turbo parser may be good choices
• If it is more similar to MT, SyntaxNet, Malt and Turbo parser are good choices

•The results suggest some preprocessing steps may be necessary for ungrammatical
sentences, such as handling redundant and missing word errors

