

## Robust Parsing for Ungrammatical Sentences

Homa B. Hashemi

Dissertation Advisor: Dr. Rebecca Hwa

#### • NLP Goal: understand and produce natural languages as humans do

As I remember , I have known her forever

#### • NLP Goal: understand and produce natural languages as humans do

As I remember , I have known her forever

- NLP Goal: understand and produce natural languages as humans do
- Syntactic Parsing: find relationship between individual words



- NLP Goal: understand and produce natural languages as humans do
- Syntactic Parsing: find relationship between individual words
- Parsing useful for many NLP applications, e.g: Question Answering, Machine Translation and Summarization
- If the parse is wrong, it would affect the downstream applications



- State-of-the-art parsers perform very well on grammatical sentences
- But even a small grammar error cause problems for them



- State-of-the-art parsers perform very well on grammatical sentences
- But even a small grammar error cause problems for them



- State-of-the-art parsers perform very well on grammatical sentences
- But even a small grammar error cause problems for them

#### Question 1:

In what ways does a parser's performance degrade when dealing with ungrammatical sentences?



### Parse Tree Fragments

- Parsers indeed have problems when sentences contain mistakes
- But there are still reliable parts in the parse tree unaffected by the mistakes



### Parse Tree Fragments

- Parsers indeed have problems when sentences contain mistakes
- But there are still reliable parts in the parse tree unaffected by the mistakes ⇒ Tree Fragments



## Parse Tree Fragments

- Parsers indeed have problems when sentences contain mistakes
- But there are still reliable parts in the parse tree unaffected by the mistakes ⇒ Tree Fragments

#### Question 2:

Is it feasible to automatically identify parse tree fragments that are plausible interpretations for the phrases they cover?



#### Question 3:

O the resulting parse tree fragments provide some useful information for downstream NLP applications?

- Fluency Judgment
- Semantic Role Labeling (SRL)





- Investigating the impact of ungrammatical sentences on parsers
- ② Introducing the new framework of parse tree fragmentation
- **③** Verifying utility of tree fragments for two NLP applications

• Ungrammatical Sentences

- Q1: Impact of Ungrammatical Sentences on Parsing
- Q2: Parse Tree Fragmentation Framework
  - Development of a Fragmentation Corpus
  - Fragmentation Methods
- Q3: Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

## Overview

### Ungrammatical Sentences

- English-as-a-Second Language (ESL)
- Machine Translation (MT)
- Q1: Impact of Ungrammatical Sentences on Parsing
- Q2: Parse Tree Fragmentation Framework
  - Development of a Fragmentation Corpus
  - Fragmentation Methods
- Q3: Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

- English learners tend to make mistakes
- To study ESL mistakes, researchers have created learner corpora:
  - ESL Sentence: We live in changeable world.
  - **Corrections:** (Missing determiner "a" at position 3), (An adjective needs replacing with "changing" between positions 3 and 4)
  - Corrected ESL Sentence: We live in a changing world.

- Machine translation systems are not perfect and make mistakes
- To improve MT systems, researchers have created MT corpora:
  - MT Output: For almost 18 years ago the Sunda space "Ulysses" flies in the area.
  - **Reference Sentence:** For almost 18 years, the probe "Ulysses" has been flying through space.
  - **Post-edited Sentence:** For almost 18 years the "Ulysses" space probe has been flying in space.

### • Ungrammatical Sentences

### Impact of Ungrammatical Sentences on Parsing

#### • Parse Tree Fragmentation Framework

- Development of a Fragmentation Corpus
- Fragmentation Methods
- Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

#### Question 1:

In what ways does a parser's performance degrade when dealing with ungrammatical sentences?

## Impact of Ungrammatical Sentences on Parsing

It o evaluate parsers we need manually annotated gold standards

- But sizable ungrammatical treebanks are not available for ungrammatical domains
- Also creating ungrammatical treebank is expensive and time-consuming
- Gold standard free approach
  - We take the automatically produced parse tree of a grammatical sentence as pseudo gold standard
  - A parse is **robust** if the parse tree it produces for the ungrammatical sentence is similar to the tree of the corresponding grammatical sentence

### Proposed Robustness Metric (Hashemi & Hwa, EMNLP 2016)



- Shared dependency: mutual dependency between two trees
- Error-related dependency: dependency connected to an extra word

$$Precision = \frac{\# \text{ of shared dependencies}}{\# \text{ dependencies - } \# \text{ error-related dependencies of ungrammatical}} = \frac{2}{5-3} = 1$$

$$Recall = \frac{\# \text{ shared dependencies}}{\# \text{ of dependencies} - \# \text{ error-related dependencies of grammatical}} = \frac{2}{4 - 0} = 0.5$$

Robustness 
$$F_1 = 2 \times \frac{Precision \times Recall}{Precision + Recall} = 0.66$$

Compare 8 leading dependency parsers:

• Malt, Mate, MST, SNN, SyntaxNet, Turbo, Tweebo, Yara

Parser training data:

- Penn Treebank (News data)
- 2 Tweebank (Twitter data)

Robustness test data containing ungrammatical/grammatical sentences:

- Inglish-as-a-Second language writings (ESL): 10,000 sentences with 1+ errors
- Machine translation outputs (MT): 10,000 sentences with 1+ errors

## Overall Parsers Performance (Accuracy & Robustness)

- Trained on Penn Treebank:
  - All parsers have high accuracy on Penn Treebank
  - All parsers are comparably more robust on ESL than MT
- Trained on Tweebank (i.e. arguably more similar to test domains):
  - Parsers are more robust on ESL and even MT
  - Interestingly, Tweebo parser is as robust as others

|           | Train o | n PTB §                   | 1-21  | Train on Tweebank <sub>train</sub> |                           |       |  |  |
|-----------|---------|---------------------------|-------|------------------------------------|---------------------------|-------|--|--|
| Parser    | UAS     | Robustness F <sub>1</sub> |       | UAF <sub>1</sub>                   | Robustness F <sub>1</sub> |       |  |  |
|           | PTB §23 | ESL MT T                  |       | Tweebank <sub>test</sub>           | ESL                       | MT    |  |  |
| Malt      | 89.58   | 93.05                     | 76.26 | 77.48                              | 94.36                     | 80.66 |  |  |
| Mate      | 93.16   | 93.24                     | 77.07 | 76.26                              | 91.83                     | 75.74 |  |  |
| MST       | 91.17   | 92.80                     | 76.51 | 73.99                              | 92.37                     | 77.71 |  |  |
| SNN       | 90.70   | 93.15                     | 74.18 | 53.4                               | 88.90                     | 71.54 |  |  |
| SyntaxNet | 93.04   | 93.24                     | 76.39 | 75.75                              | 88.78                     | 81.87 |  |  |
| Turbo     | 92.84   | 93.72                     | 77.79 | 79.42                              | 93.28                     | 78.26 |  |  |
| Tweebo    | -       | -                         | -     | 80.91                              | 93.39                     | 79.47 |  |  |
| Yara      | 93.09   | 93.52                     | 73.15 | 78.06                              | 93.04                     | 75.83 |  |  |

Tweebo parser is not trained on Penn Treebank, because it is a specialization of Turbo parser to parse tweets.

## Parse Robustness by Number of Errors

To what extent is each parser impacted by the increase in number of errors?

- Robustness degrades faster with the increase of errors for MT than ESL
- Training on Tweebank help some parsers to be more robust against many errors



## Impact of Grammatical Error Types on Parser Robustness

What types of grammatical errors are more problematic for parsers?

- Replacement errors are the least problematic error for all the parsers
- Missing errors are the most difficult error type

|           | Train on PTB §1-21 |       |             |       |                  | Train on Tweebank <sub>train</sub> |             |       |        |       |       |        |
|-----------|--------------------|-------|-------------|-------|------------------|------------------------------------|-------------|-------|--------|-------|-------|--------|
| Parser    | ESL                |       | MT          |       | ESL              |                                    |             | MT    |        |       |       |        |
|           | Repl.              | Miss. | Unnec.      | Repl. | Miss.            | Unnec.                             | Repl.       | Miss. | Unnec. | Repl. | Miss. | Unnec. |
| min       | 93.7 (MST)         |       | 92.8 (Yara) |       | 89.4 (SyntaxNet) |                                    | 87.8 (SNN)  |       |        |       |       |        |
| Malt      |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| Mate      |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| MST       |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| SNN       |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| SyntaxNet |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| Turbo     |                    |       |             | ]     |                  |                                    |             |       |        |       |       |        |
| Tweebo    |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| Yara      |                    |       |             |       |                  |                                    |             |       |        |       |       |        |
| max       | 96.9 (Turbo)       |       | 97.2 (SNN)  |       | 97.8 (Malt)      |                                    | 97.6 (Malt) |       |        |       |       |        |

Each bar represents the level of robustness of each parser.

- We have proposed a robustness metric without referring to a gold standard corpus
- We have presented a set of empirical analysis on the parser robustness of ungrammatical texts
- The results show that when ignoring erroneous parts of the ungrammatical sentences, parsers are doing reasonably well on finding syntactic structures of the remaining grammatical parts of the sentences
- Therefore, an alternative reasonable approach to parse ungrammatical sentences would be to omit the problematic structures

- Ungrammatical Sentences
- Impact of Ungrammatical Sentences on Parsing

#### • Parse Tree Fragmentation Framework

- Development of a Fragmentation Corpus
- Fragmentation Methods
- Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

• There are reliable parts in the parse tree of ungrammatical sentences that are not affected by the mistakes

#### Question 2:

Is it feasible to automatically identify these unaffected areas of the parse tree and prune the problematic parts?

### Parse Tree Fragmentation

- Goal: Identify and prune implausible dependency arcs
- Tree fragments are reasonable isolated parts of parse trees
- Parse tree fragmentation is the process of pruning the problematic parts of parse trees



How to build gold fragments for ungrammatical sentences?

Manually annotate a fragmentation corpus

- Annotation projects are expensive and time-consuming
- Fragmentation may depend on the specific NLP application
- Instead we leverage the existing corpora

### (1) Pseudo Gold Fragmentation (PGold)

Reconstruct the ungrammatical sentence and its fragments using the parse tree of the grammatical sentence:

Prune the dependency arcs based on the type of the error



Prune arcs to or from the right or left words of the unaligned word that pass over it

• Input: Grammatical sentence and its parse tree



- Input: Grammatical sentence and its parse tree
- The ungrammatical version has 2 errors: a missing comma and a phrase replacement error



- Input: Grammatical sentence and its parse tree
- The ungrammatical version has 2 errors: a missing comma and a phrase replacement error
- Reconstructing the ungrammatical sentence by applying:
  - First error: missing comma
  - Second error: replacement error



- Input: Grammatical sentence and its parse tree
- The ungrammatical version has 2 errors: a missing comma and a phrase replacement error
- Reconstructing the ungrammatical sentence by applying:
  - First error: missing comma
  - Second error: replacement error
- Output: PGold fragmentation of the ungrammatical sentence



# Developing a Fragmentation Corpus: (2) Reference

### (2) Reference Fragmentation (Reference)

Given an ungrammatical sentence and a grammatical version of the same sentence:

- Parse ungrammatical sentence
- 2 Find alignments between grammatical/ungrammatical sentence
- In the second second
- I Prune arcs to or from the right or left words of the unaligned word that pass over it


# Developing a Fragmentation Corpus: (2) Reference

#### (2) Reference Fragmentation (Reference)

Given an ungrammatical sentence and a grammatical version of the same sentence:

- Parse ungrammatical sentence
- 2 Find alignments between grammatical/ungrammatical sentence
- In the second second
- I Prune arcs to or from the right or left words of the unaligned word that pass over it



# Developing a Fragmentation Corpus: (2) Reference

#### (2) Reference Fragmentation (Reference)

Given an ungrammatical sentence and a grammatical version of the same sentence:

- Parse ungrammatical sentence
- 2 Find alignments between grammatical/ungrammatical sentence
- In the second second
- Prune arcs to or from the right or left words of the unaligned word that pass over it



- Pseudo gold fragments (PGold)
  - Represent the most linguistically plausible interpretation of the ungrammatical sentence
  - Because PGold obtains fragments from parse trees of grammatical sentences
- Reference fragments (Reference)
  - May not be linguistically plausible
  - Because Reference fragments are formed from automatically parse trees of ungrammatical sentences
  - Thus, Reference represents an upperbound on what a real fragmentation algorithm could achieve

### Overview

- Ungrammatical Sentences
- Impact of Ungrammatical Sentences on Parsing
- Parse Tree Fragmentation Framework
  - Development of a Fragmentation Corpus
  - Fragmentation Methods
    - Classification
    - Parser
    - sequence-to-sequence
- Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

# Fragmentation methods: (1) Classification

#### (1) Classification-based Parse Tree Fragmentation (Classification)

- Post-hoc process on generated parse trees of ungrammatical sentences
- Binary classification: Each arc is kept or cut
- Input: parse tree
- Output: fragmented tree

#### Features:

- Depth & height of head, modifier
- Part-of-speech tag of head, modifier
- Over a straight of the stra



#### Training data: Parse trees fragments by Reference

# Fragmentation methods: (2) Parser

#### (2) Parser Adaptation Parse Tree Fragmentation (Parser)

Jointly learns to parse a sentence and fragment it

- Build a treebank of ungrammatical sentences with their Reference fragments
- Train a state-of-the-art dependency parser
- Input: sentence
- Output: fragmented tree



CoNLL format:

| 1 | As       | IN  | 3 |
|---|----------|-----|---|
| 2 | I        | PRP | 3 |
| 3 | remember | VB  | 0 |
| 4 | I        | PRP | 6 |
| 5 | have     | VB  | 6 |
| 6 | known    | VB  | 0 |
| 7 | her      | PRP | 6 |
| 8 | for      | IN  | 0 |
| 9 | ever     | RB  | 0 |

# Fragmentation methods: (3) seq2seq

- (3) Sequence-to-Sequence Parse Tree Fragmentation (seq2seq)
  - Sequence-to-sequence Long Short-Term Memory (LSTM) model
    - Introduced by Sutskever et al. (2014) for translation



- Used for parsing by Vinyals et al. (2015a)
  - Input: John has a dog
  - Output: (S (NP NNP )<sub>NP</sub> (VP VBZ (NP DT NN )<sub>NP</sub> )<sub>VP</sub> .)<sub>S</sub>

# Fragmentation methods: (3) seq2seq

- (3) Sequence-to-Sequence Parse Tree Fragmentation (seq2seq)
  - seq2seq models require an effective representation for the input and the output to yield good performance
  - We linearize dependency trees with arc-standard transitions:

| Buffer                                  | Stack                   | Action    | Sequence |
|-----------------------------------------|-------------------------|-----------|----------|
| As I remember I have known her for ever |                         |           |          |
| I remember I have known her for ever    | As                      | Shift     | As       |
| remember I have known her for ever      | As I                    | Shift     | 1        |
| I have known her for ever               | As I remember           | Shift     | remember |
| I have known her for ever               | As remember             | Left-arc  | @L       |
| I have known her for ever               | remember                | Left-arc  | @L       |
| have known her for ever                 | remember I              | Shift     | 1        |
| known her for ever                      | remember I have         | Shift     | have     |
| her for ever                            | remember I have known   | Shift     | known    |
| her for ever                            | remember I known        | Left-arc  | @L       |
| her for ever                            | remember known          | Left-arc  | @L       |
| for ever                                | remember known her      | Shift     | her      |
| for ever                                | remember known          | Right-arc | @R       |
| ever                                    | remember known for      | Shift     | for      |
|                                         | remember known for ever | Shift     | ever     |
|                                         | remember known for      | Right-arc | @RCUT    |
|                                         | remember known          | Right-arc | @RCUT    |
|                                         | remember                | Right-arc | @RCUT    |

### Example of Arc-Standard Actions

- Jointly parse and fragment sentences
- Input: As I remember I have known her for ever
- Output: As I remember @L @L I have known @L @L her @R for ever @RCUT @RCUT @RCUT



## Summary of Fragmentation Methods

| Method            | Strength                                                                                                                                                                                         | Weakness                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Classification    | <ul> <li>A couple of thousand sentences<br/>is enough for training.</li> </ul>                                                                                                                   | <ul> <li>It needs feature engineering.</li> <li>It post-processes parser outputs, so parser's errors might propagate.</li> </ul>                                                                                                       |
| Parser retraining | <ul> <li>Jointly learns to parse and fragment.</li> <li>Theoretically any dependency parser can be trained.</li> </ul>                                                                           | <ul> <li>It needs high quality or a huge amount<br/>of training data.</li> <li>In practice, parsers' implementations<br/>matter. Because they perform<br/>differently even though they have the<br/>same underlying design.</li> </ul> |
| seq2seq           | <ul> <li>Jointly learns to parse and fragment.</li> <li>No need for feature engineering.</li> <li>No need for high quality annotated data, even noisy training data would be helpful.</li> </ul> | <ul> <li>It needs a huge amount of parallel<br/>training data which might not be<br/>available for some ungrammatical<br/>domains.</li> </ul>                                                                                          |

- Ungrammatical Sentences
- Impact of Ungrammatical Sentences on Parsing
- Parse Tree Fragmentation Framework
  - Development of a Fragmentation Corpus
  - Fragmentation Methods
- Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

#### • Intrinsic Evaluation:

• Compare fragments against gold standard fragments

#### • Extrinsic Evaluation:

- Evaluate potential uses of tree fragments in downstream applications:
  - I Fluency Judgment
  - **2** Semantic Role Labeling

### Experimental Setup: Datasets

#### **1** English as a Second Language corpus (ESL)

- 5000 sentences with  $1+\ {\rm errors}$  to train Classification
- 576,000/30,000 sentences as train/development of Parser and seq2seq
- 7000 sentences with 0+ errors to test

#### Machine Translation outputs (MT)

Fluency score calculated by edit rates (HTER)

- 4000 sentences with HTER score > 0.1 to train Classification
- 9000/2000 sentences as train/development of Parser
- 6000 sentences with HTER scores  $\geqslant$  0 to test
- $\ast$  No sizable parallel MT data to train seq2seq, so we use ESL seq2seq model and test it on MT

### Classification

• Use standard Gradient Boosting Classifier (Friedman, 2001)

#### 2 Parser

• Train the SyntaxNet parser (Andor, 2016), a transition-based neural network parser

### seq2seq

- Use OpenNMT (klein, 2017) package, a neural machine translation system on the Torch mathematical toolkit
- 2-layer LSTMs with 750 dimensional hidden states

### Intrinsic Evaluation: Performance of Each Fragmentation Method

Comparing resulting tree fragments against Reference fragments:

- Unlabeled Attachment Score (UAS): percentage of words with correct head
- Accuracy of Cut Arcs: percentage of correct pruned dependency arcs

|         |                                 |       | Accuracy of cut arcs |                |                        |
|---------|---------------------------------|-------|----------------------|----------------|------------------------|
| dataset | method                          | UAS   | $Precision_{cut}$    | $Recall_{cut}$ | F-score <sub>cut</sub> |
|         | Classification                  | 61.36 | 0.35                 | 0.79           | 0.48                   |
| FSI     | Parser                          | 63    | 0.35                 | 0.53           | 0.42                   |
| LJL     | seq2seq                         | 82.4  | 0.71                 | 0.57           | 0.63                   |
|         | Classification                  | 60.67 | 0.49                 | 0.66           | 0.56                   |
|         | Parser                          | 50.55 | 0.43                 | 0.70           | 0.54                   |
| MT      | seq2seq (trained on ESL)        | 58.82 | 0.68                 | 0.16           | 0.26                   |
|         | Classification (trained on ESL) | 62.23 | 0.51                 | 0.52           | 0.51                   |

• In ESL, seq2seq method is more similar to the Reference

|         |                                 |       | Accuracy of cut arcs     |                |                        |
|---------|---------------------------------|-------|--------------------------|----------------|------------------------|
| dataset | method                          | UAS   | Precision <sub>cut</sub> | $Recall_{cut}$ | F-score <sub>cut</sub> |
|         | Classification                  | 61.36 | 0.35                     | 0.79           | 0.48                   |
| FSI     | Parser                          | 63    | 0.35                     | 0.53           | 0.42                   |
| ESL     | seq2seq                         | 82.4  | 0.71                     | 0.57           | 0.63                   |
|         | Classification                  | 60.67 | 0.49                     | 0.66           | 0.56                   |
|         | Parser                          | 50.55 | 0.43                     | 0.70           | 0.54                   |
| MT      | seq2seq (trained on ESL)        | 58.82 | 0.68                     | 0.16           | 0.26                   |
|         | Classification (trained on ESL) | 62.23 | 0.51                     | 0.52           | 0.51                   |

### Intrinsic Evaluation: Performance of Each Fragmentation Method

- In ESL, seq2seq method is more similar to the Reference
- In MT, Classification method is more similar to the Reference

|         |                                 |       | Accuracy of cut arcs     |                |                        |
|---------|---------------------------------|-------|--------------------------|----------------|------------------------|
| dataset | method                          | UAS   | Precision <sub>cut</sub> | $Recall_{cut}$ | F-score <sub>cut</sub> |
|         | Classification                  | 61.36 | 0.35                     | 0.79           | 0.48                   |
| FSI     | Parser                          | 63    | 0.35                     | 0.53           | 0.42                   |
| LJL     | seq2seq                         | 82.4  | 0.71                     | 0.57           | 0.63                   |
|         | Classification                  | 60.67 | 0.49                     | 0.66           | 0.56                   |
|         | Parser                          | 50.55 | 0.43                     | 0.70           | 0.54                   |
| MT      | seq2seq (trained on ESL)        | 58.82 | 0.68                     | 0.16           | 0.26                   |
|         | Classification (trained on ESL) | 62.23 | 0.51                     | 0.52           | 0.51                   |

### Intrinsic Evaluation: Performance of Each Fragmentation Method

- In ESL, seq2seq method is more similar to the Reference
- In MT, Classification method is more similar to the Reference
- Cross-domain model: Classification cuts more arcs, thus performs better on MT

|         |                                 |       | Accuracy of cut arcs     |                |                        |
|---------|---------------------------------|-------|--------------------------|----------------|------------------------|
| dataset | method                          | UAS   | Precision <sub>cut</sub> | $Recall_{cut}$ | F-score <sub>cut</sub> |
|         | Classification                  | 61.36 | 0.35                     | 0.79           | 0.48                   |
| FSI     | Parser                          | 63    | 0.35                     | 0.53           | 0.42                   |
| ESL     | seq2seq                         | 82.4  | 0.71                     | 0.57           | 0.63                   |
|         | Classification                  | 60.67 | 0.49                     | 0.66           | 0.56                   |
|         | Parser                          | 50.55 | 0.43                     | 0.70           | 0.54                   |
| MT      | seq2seq (trained on ESL)        | 58.82 | 0.68                     | 0.16           | 0.26                   |
|         | Classification (trained on ESL) | 62.23 | 0.51                     | 0.52           | 0.51                   |

### Intrinsic Evaluation: Evaluation of Tree Fragmentation Methods

Comparing resulting tree fragments against Reference fragments:

• set-2-set P/R/F1: percentage of shared arcs after mapping two fragment sets

| dataset | method                          | Avg. #of<br>Fragments | Avg. Size of<br>Fragments | set-2-set P/R/F <sub>1</sub> to<br>Reference |
|---------|---------------------------------|-----------------------|---------------------------|----------------------------------------------|
|         | PGold                           | 3.51                  | 8.61                      | -                                            |
| ESL     | Reference                       | 3.51                  | 8.60                      | 0.97/0.97/0.97 (to<br>PGold)                 |
|         | Classification                  | 7.29                  | 2.40                      | 0.90/0.57/0.67                               |
|         | Parser                          | 1.8                   | 13.62                     | 0.77/0.82/0.77                               |
|         | seq2seq                         | 2.92                  | 9.36                      | 0.85/0.85/ <b>0.83</b>                       |
|         | Reference                       | 9.66                  | 5.36                      | -                                            |
| МТ      | Classification                  | 12.96                 | 2.09                      | 0.71/0.57/0.60                               |
|         | Parser                          | 15.61                 | 2.38                      | 0.63/0.37/0.41                               |
|         | seq2seq (trained on ESL)        | 2.29                  | 18.70                     | 0.54/0.72/0.59                               |
|         | Classification (trained on ESL) | 9.80                  | 2.88                      | 0.67/0.64/ <b>0.62</b>                       |

### Intrinsic Evaluation: Evaluation of Tree Fragmentation Methods

Comparing resulting tree fragments against Reference fragments:

- set-2-set P/R/F1: percentage of shared arcs after mapping two fragment sets
- Reference fragments are the most similar to PGold

| dataset | method                          | Avg. #of<br>Fragments | Avg. Size of<br>Fragments | set-2-set P/R/F <sub>1</sub> to<br>Reference |
|---------|---------------------------------|-----------------------|---------------------------|----------------------------------------------|
|         | PGold                           | 3.51                  | 8.61                      | -                                            |
| ESL     | Reference                       | 3.51                  | 8.60                      | 0.97/0.97/0.97 (to<br>PGold)                 |
|         | Classification                  | 7.29                  | 2.40                      | 0.90/0.57/0.67                               |
|         | Parser                          | 1.8                   | 13.62                     | 0.77/0.82/0.77                               |
|         | seq2seq                         | 2.92                  | 9.36                      | 0.85/0.85/ <b>0.83</b>                       |
|         | Reference                       | 9.66                  | 5.36                      | -                                            |
| МТ      | Classification                  | 12.96                 | 2.09                      | 0.71/0.57/0.60                               |
|         | Parser                          | 15.61                 | 2.38                      | 0.63/0.37/0.41                               |
|         | seq2seq (trained on ESL)        | 2.29                  | 18.70                     | 0.54/0.72/0.59                               |
|         | Classification (trained on ESL) | 9.80                  | 2.88                      | 0.67/0.64/ <b>0.62</b>                       |

### Intrinsic Evaluation: Evaluation of Tree Fragmentation Methods

Comparing resulting tree fragments against Reference fragments:

- set-2-set P/R/F1: percentage of shared arcs after mapping two fragment sets
- Reference fragments are the most similar to PGold
- Reference produces more fragments in MT

| dataset | method                          | Avg. #of<br>Fragments | Avg. Size of<br>Fragments | set-2-set P/R/F <sub>1</sub> to<br>Reference |
|---------|---------------------------------|-----------------------|---------------------------|----------------------------------------------|
|         | PGold                           | 3.51                  | 8.61                      | -                                            |
| ESL     | Reference                       | 3.51                  | 8.60                      | 0.97/0.97/0.97 (to<br>PGold)                 |
|         | Classification                  | 7.29                  | 2.40                      | 0.90/0.57/0.67                               |
|         | Parser                          | 1.8                   | 13.62                     | 0.77/0.82/0.77                               |
|         | seq2seq                         | 2.92                  | 9.36                      | 0.85/0.85/ <b>0.83</b>                       |
|         | Reference                       | 9.66                  | 5.36                      | -                                            |
|         | Classification                  | 12.96                 | 2.09                      | 0.71/0.57/0.60                               |
| MT      | Parser                          | 15.61                 | 2.38                      | 0.63/0.37/0.41                               |
|         | seq2seq (trained on ESL)        | 2.29                  | 18.70                     | 0.54/0.72/0.59                               |
|         | Classification (trained on ESL) | 9.80                  | 2.88                      | 0.67/0.64/ <b>0.62</b>                       |

- Ungrammatical Sentences
- Impact of Ungrammatical Sentences on Parsing
- Parse Tree Fragmentation Framework
  - Development of a Fragmentation Corpus
  - Fragmentation Methods
- Empirical Evaluation of Parse Tree Fragmentation
  - Intrinsic Evaluation
  - Extrinsic Evaluation: Fluency Judgment
  - Extrinsic Evaluation: Semantic Role Labeling

#### Question 3:

Do the resulting parse tree fragments provide some useful information for downstream NLP applications?

- **9** Fluency Judgment: Predict how natural a sentence might sound
- **2** Semantic Role Labeling: Discover semantic role of terms

## Extrinsic Evaluation: Fluency Judgment

An automatic fluency judge can be used to:

- Decide whether an MT output needs to be post-processed
- Help grading student writings

Binary classification: a sentence has virtually no error or many errors

Regression: Predict number of errors in ESL dataset or edit rates in MT dataset

Our feature set:

- Number of fragments
- 2 Average size of fragments
- Minimum size of fragments
- Maximum size of fragments

| ESL               |         |                    |  |  |  |
|-------------------|---------|--------------------|--|--|--|
| Binary Regression |         |                    |  |  |  |
| Feature Set       | Acc.(%) | Pearson's <i>r</i> |  |  |  |
| Chance            | 76.1    |                    |  |  |  |
| length            | 77.3    | 0.304              |  |  |  |
| C&J               | 76.3    | 0.318              |  |  |  |
| TSG               | 77.3    | 0.285              |  |  |  |
| PGold             | 100     | 0.889              |  |  |  |
| Reference         | 100     | 0.879              |  |  |  |
| Classification    | 80.7    | 0.411              |  |  |  |
| Parser Retraining | 77.6    | 0.3                |  |  |  |
| seq2seq           | 81.3    | 0.377              |  |  |  |

| MT                              |         |                    |
|---------------------------------|---------|--------------------|
|                                 | Binary  | Regression         |
| Feature Set                     | Acc.(%) | Pearson's <i>r</i> |
| Chance                          | 72.2    |                    |
| length                          | 72      | 0.018              |
| C&J                             | 68.3    | 0.136              |
| TSG                             | 69.8    | 0.105              |
| Reference                       | 98.8    | 0.865              |
| Classification                  | 73.3    | 0.228              |
| Parser Retraining               | 71.8    | 0.077              |
| seq2seq (trained on ESL)        | 71.9    | 0.06               |
| Classification (trained on ESL) | 72.4    | 0.207              |

Experiments using 10-fold cross validation with Gradient Boosting Classifier

C&J: Charniak&Johnson, "Coarse-to-fine n-best parsing and MaxEnt discriminative reranking", ACL 2005.

TSG: Post, "Judging grammaticality with tree substitution grammar derivations", ACL 2011.

| ESL               |         |                    |  |  |
|-------------------|---------|--------------------|--|--|
|                   | Binary  | Regression         |  |  |
| Feature Set       | Acc.(%) | Pearson's <i>r</i> |  |  |
| Chance            | 76.1    |                    |  |  |
| length            | 77.3    | 0.304              |  |  |
| C&J               | 76.3    | 0.318              |  |  |
| TSG               | 77.3    | 0.285              |  |  |
| PGold             | 100     | 0.889              |  |  |
| Reference         | 100     | 0.879              |  |  |
| Classification    | 80.7    | 0.411              |  |  |
| Parser Retraining | 77.6    | 0.3                |  |  |
| seq2seq           | 81.3    | 0.377              |  |  |

| MT                              |         |                    |
|---------------------------------|---------|--------------------|
|                                 | Binary  | Regression         |
| Feature Set                     | Acc.(%) | Pearson's <i>r</i> |
| Chance                          | 72.2    |                    |
| length                          | 72      | 0.018              |
| C&J                             | 68.3    | 0.136              |
| TSG                             | 69.8    | 0.105              |
| Reference                       | 98.8    | 0.865              |
| Classification                  | 73.3    | 0.228              |
| Parser Retraining               | 71.8    | 0.077              |
| seq2seq (trained on ESL)        | 71.9    | 0.06               |
| Classification (trained on ESL) | 72.4    | 0.207              |

Experiments using 10-fold cross validation with Gradient Boosting Classifier

C&J: Charniak&Johnson, "Coarse-to-fine n-best parsing and MaxEnt discriminative reranking", ACL 2005.

TSG: Post, "Judging grammaticality with tree substitution grammar derivations", ACL 2011.

• SRL identifies relations between group of words with respect to a verb



- SRL identifies relations between group of words with respect to a verb
- Grammatical mistakes have also impacts on semantic of the sentences



- SRL identifies relations between group of words with respect to a verb
- Grammatical mistakes have also impacts on semantic of the sentences



- Detecting *incorrect semantic dependencies* is crucial for applications that require high accuracy
  - e.g. Building accurate knowledge bases for question answering systems

- SRL identifies relations between group of words with respect to a verb
- Grammatical mistakes have also impacts on semantic of the sentences



We hypothesize that through **parse tree fragmentation**, major syntactic problems can be identified; thus, tree fragments should be useful to detect *incorrect dependencies* of semantic role labeling

We introduce a binary classifier: indicate whether the semantic dependency is correct or incorrect

#### Features:

- Binary feature denotes whether the semantic dependency crosses between parse tree fragments
- 2 Label of semantic dependency (e.g. A0).
- Oepth & height of predicate, argument
- Part-of-speech tag of predicate, argument
- Word bigrams and trigrams



## Creating pseudo gold semantic dependencies

• We need ungrammatical sentences with annotated semantic dependencies

Ungrammatical

As I remember I have known her for ever

## Creating pseudo gold semantic dependencies

- We need ungrammatical sentences with annotated semantic dependencies
- Similar to syntactic dependencies:
  - We take automatically produced semantic relations of corresponding grammatical sentence as gold standard



## Creating pseudo gold semantic dependencies

- We need ungrammatical sentences with annotated semantic dependencies
- Similar to syntactic dependencies:
  - We take automatically produced semantic relations of corresponding grammatical sentence as gold standard



## Evaluating SRL Annotations of Ungrammatical Sentences

- Use CoNLL-2009 evaluation script to compare semantic dependencies
- True Positive (TP): # of correct semantic dependencies
- False Positives (FP): # of incorrect semantic dependencies (Type I error)
- Monitoring False Positives is crucial to evaluate helpfulness of fragmentation

False Discovery Rate (FDR) = 
$$\frac{\text{False Positive}}{\text{False Positive} + \text{True Positive}} = \frac{2}{2+4} \approx 33\%$$



## **Overall False Discovery Rates**

Do parse tree fragments help detecting incorrect semantic dependencies?

| ESL            |                      |  |
|----------------|----------------------|--|
| method         | FDR ( $\downarrow$ ) |  |
| Basic          | 12.81                |  |
| Reference      | 3.65                 |  |
| Classification | 7.40                 |  |
| Parser         | 7.88                 |  |
| seq2seq        | 7.32                 |  |

| MT                              |                      |  |  |
|---------------------------------|----------------------|--|--|
| method                          | FDR ( $\downarrow$ ) |  |  |
| Basic                           | 33.51                |  |  |
| Reference                       | 16.16                |  |  |
| Classification                  | 26.96                |  |  |
| Parser                          | 26.72                |  |  |
| seq2seq (trained on ESL)        | 26.43                |  |  |
| Classification (trained on ESL) | 26.84                |  |  |
## **Overall False Discovery Rates**

Do parse tree fragments help detecting incorrect semantic dependencies?

• **Basic** compares automatic semantic dependencies of ungrammatical sentences with pseudo gold dependencies

| ESL            |                      |  |
|----------------|----------------------|--|
| method         | FDR ( $\downarrow$ ) |  |
| Basic          | 12.81                |  |
| Reference      | 3.65                 |  |
| Classification | 7.40                 |  |
| Parser         | 7.88                 |  |
| seq2seq        | 7.32                 |  |

| MT                              |         |  |
|---------------------------------|---------|--|
| method                          | FDR (↓) |  |
| Basic                           | 33.51   |  |
| Reference                       | 16.16   |  |
| Classification                  | 26.96   |  |
| Parser                          | 26.72   |  |
| seq2seq (trained on ESL)        | 26.43   |  |
| Classification (trained on ESL) | 26.84   |  |

## **Overall False Discovery Rates**

Do parse tree fragments help detecting incorrect semantic dependencies?

- **Basic** compares automatic semantic dependencies of ungrammatical sentences with pseudo gold dependencies
- Applying fragmentation methods significantly helps

| ESL                       |       |  |  |
|---------------------------|-------|--|--|
| method FDR $(\downarrow)$ |       |  |  |
| Basic                     | 12.81 |  |  |
| Reference                 | 3.65  |  |  |
| Classification            | 7.40  |  |  |
| Parser                    | 7.88  |  |  |
| seq2seq                   | 7.32  |  |  |

| MT                              |                      |  |
|---------------------------------|----------------------|--|
| method                          | FDR ( $\downarrow$ ) |  |
| Basic                           | 33.51                |  |
| Reference                       | 16.16                |  |
| Classification                  | 26.96                |  |
| Parser                          | 26.72                |  |
| seq2seq (trained on ESL)        | 26.43                |  |
| Classification (trained on ESL) | 26.84                |  |

# **Overall False Discovery Rates**

Do parse tree fragments help detecting incorrect semantic dependencies?

- **Basic** compares automatic semantic dependencies of ungrammatical sentences with pseudo gold dependencies
- Applying fragmentation methods significantly helps
- seq2seq outperforms even though it learns both to parse and fragment

| ES             | SL      |    |
|----------------|---------|----|
| method         | FDR (↓) | m  |
| Basic          | 12.81   | B  |
| Reference      | 3.65    | R  |
| Classification | 7.40    | Pa |
| Parser         | 7.88    | se |
| seq2seq        | 7.32    | CI |

| MT                              |                      |  |  |
|---------------------------------|----------------------|--|--|
| method                          | FDR ( $\downarrow$ ) |  |  |
| Basic                           | 33.51                |  |  |
| Reference                       | 16.16                |  |  |
| Classification                  | 26.96                |  |  |
| Parser                          | 26.72                |  |  |
| seq2seq (trained on ESL)        | 26.43                |  |  |
| Classification (trained on ESL) | 26.84                |  |  |

Are some error types more challenging for SRL system?

• An error can be either in a verb role, an argument role, or no semantic role

| ESL            |                       |  |  |  |
|----------------|-----------------------|--|--|--|
| Method         | Verb Argument No role |  |  |  |
| min            | 3.05 (Reference)      |  |  |  |
| Basic          |                       |  |  |  |
| Reference      |                       |  |  |  |
| Classification |                       |  |  |  |
| Parser         |                       |  |  |  |
| seq2seq        |                       |  |  |  |
| max            | 18.09 (Parser)        |  |  |  |

| MT                              |                       |          |         |
|---------------------------------|-----------------------|----------|---------|
| Method                          | Verb                  | Argument | No role |
| min                             | 7.71 (Reference)      |          |         |
| Basic                           |                       |          |         |
| Reference                       |                       |          |         |
| Classification                  |                       |          |         |
| Parser                          |                       |          |         |
| seq2seq (trained on ESL)        |                       |          |         |
| Classification (trained on ESL) |                       |          |         |
| max                             | 20.1 (Classification) |          |         |

Are some error types more challenging for SRL system?

- An error can be either in a verb role, an argument role, or no semantic role
- Sentences with argument errors are more challenging

| ESL            |                       |  |  |  |
|----------------|-----------------------|--|--|--|
| Method         | Verb Argument No role |  |  |  |
| min            | 3.05 (Reference)      |  |  |  |
| Basic          |                       |  |  |  |
| Reference      |                       |  |  |  |
| Classification |                       |  |  |  |
| Parser         |                       |  |  |  |
| seq2seq        |                       |  |  |  |
| max            | 18.09 (Parser)        |  |  |  |

| MT                              |                       |          |         |
|---------------------------------|-----------------------|----------|---------|
| Method                          | Verb                  | Argument | No role |
| min                             | 7.71 (Reference)      |          |         |
| Basic                           |                       |          |         |
| Reference                       |                       |          |         |
| Classification                  |                       |          |         |
| Parser                          |                       |          |         |
| seq2seq (trained on ESL)        |                       |          |         |
| Classification (trained on ESL) |                       |          |         |
| max                             | 20.1 (Classification) |          |         |

## Incorrect Semantic Dependencies by Number of Errors

- To what extent parse tree fragmentation helps by increasing number of errors?
  - FDR score is increasing more rapidly for the Basic than Reference



# Incorrect Semantic Dependencies by Number of Errors

- To what extent parse tree fragmentation helps by increasing number of errors?
  - FDR score is increasing more rapidly for the Basic than Reference



- Fragmentation features are useful to detect some of incorrect semantic dependencies
- Reference significantly helps SRL as the upper bound approach

Examining the problems of parsing ungrammatical sentences:

- Analyzing the negative impact of ungrammatical sentences on
  - State-of-the-art statistical parsers
- Introducing the new framework of parse tree fragmentation
  - By pruning implausible dependency arcs of parse trees
- Empirical studies shows that fragmenting trees is helpful for NLP applications
  - Sentence-level fluency judgment
  - Semantic role labeling

Publications:

- Hashemi & Hwa, An Evaluation of Parser Robustness for Ungrammatical Sentences, EMNLP, 2016.
- Hashemi & Hwa, Parse Tree Fragmentation of Ungrammatical Sentences, IJCAI, 2016.
- Hashemi & Hwa, Jointly Parse and Fragment Ungrammatical Sentences, AAAI, 2018.

Future Work:

- Expanding parser robustness evaluation on various domains
- Applying fragmentation on a wider set of applications
- Building specialized parsers to handle ungrammatical sentences, e.g by adding new actions to transition-based dependency parsers



## References

- Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S., and Collins, M. (2016). Globally normalized transition-based neural networks. arXiv.
- Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics.
- Klein, G., Kim, Y., Deng, Y., Senellart, J., and Rush, A. M. (2017).
  OpenNMT: Open-source toolkit for neural machine translation. arXiv.
- Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with neural networks. NIPS.
- Vinyals, O., Kaiser, Å, Koo, T., Petrov, S., Sutskever, I., and Hinton, G. (2015a). Grammar as a foreign language. NIPS.
- Vinyals, O., Bengio, S., and Kudlur, M. (2015b). Order matters: Sequence to sequence for sets. arXiv.

## **Evaluation of Classification-based Parse Tree Fragmentation**

- Classification runs a binary prediction to decide to keep an edge or cut it
- Unbalanced data (few edges are cut)
- Never cutting any edge results in high accuracy: 84% on ESL, 65% on MT
- Thus, we evaluate classifiers with AUC measure

| method          | ESL  | МТ   |
|-----------------|------|------|
| No cut baseline | 0.5  | 0.5  |
| Classification  | 0.75 | 0.63 |

## Relation of Syntactic and Semantic Dependencies



## Relationships between Fragments Statistics

### ESL dataset

|                | # of Fragments   |                       | size of Fragments |                       |
|----------------|------------------|-----------------------|-------------------|-----------------------|
| Method         | Pearson <i>r</i> | RMSE ( $\downarrow$ ) | Pearson <i>r</i>  | RMSE ( $\downarrow$ ) |
| Classification | 0.453            | 5.086                 | 0.299             | 0.543                 |
| Parser         | 0.092            | 3.946                 | 0.076             | 0.545                 |
| seq2seq        | 0.407            | 3.068                 | 0.281             | 0.444                 |

|                                 | # of Fragments   |                       | size of Fragments |          |
|---------------------------------|------------------|-----------------------|-------------------|----------|
| Method                          | Pearson <i>r</i> | RMSE ( $\downarrow$ ) | Pearson <i>r</i>  | RMSE (↓) |
| Classification                  | 0.646            | 7.433                 | 0.377             | 0.335    |
| Parser                          | 0.527            | 11.135                | 0.223             | 0.364    |
| seq2seq (trained on ESL)        | 0.012            | 10.212                | -0.011            | 0.654    |
| Classification (trained on ESL) | 0.589            | 6.169                 | 0.326             | 0.327    |

#### Robust Parsing for Ungrammatical Sentences

# Correlation between 4 fluency features

| Method         | # of fragments | Avg. size | Min size | Max size |
|----------------|----------------|-----------|----------|----------|
| Reference      | 0.842          | -0.822    | -0.765   | -0.766   |
| Classification | 0.409          | -0.317    | -0.178   | -0.241   |
| Parser         | 0.099          | -0.093    | -0.084   | -0.063   |
| seq2seq        | 0.285          | -0.241    | -0.215   | -0.177   |

| MT dataset                      |                |           |          |          |  |  |  |  |
|---------------------------------|----------------|-----------|----------|----------|--|--|--|--|
| Method                          | # of fragments | Avg. size | Min size | Max size |  |  |  |  |
| Reference                       | 0.662          | -0.608    | -0.476   | -0.77    |  |  |  |  |
| Classification                  | 0.155          | -0.122    | -0.047   | -0.171   |  |  |  |  |
| Parser                          | 0.081          | -0.056    | -0.042   | -0.082   |  |  |  |  |
| seq2seq (trained on ESL)        | 0.076          | -0.077    | -0.073   | -0.058   |  |  |  |  |
| Classification (trained on ESL) | 0.191          | -0.148    | -0.06    | -0.179   |  |  |  |  |

Mapping each fragment of the first set  $S_1$  with a fragment of the second set  $S_2$  that have the maximum number of shared edges:

$$Precision = \frac{\text{number of shared edges between all mapped fragments}}{\text{total number of edges of } S_1}$$

 $Recall = rac{ ext{number of shared edges between all mapped fragments}}{ ext{total number of edges of } S_2}$ 

$$F_1(S_1, S_2) = 2 imes rac{Precision imes Recall}{Precision + Recall}$$